Polynomial inequalities on algebraic sets

M. Baran; W. Pleśniak

Studia Mathematica (2000)

  • Volume: 141, Issue: 3, page 209-219
  • ISSN: 0039-3223

Abstract

top
We give an estimate of Siciak’s extremal function for compact subsets of algebraic varieties in n (resp. n ). As an application we obtain Bernstein-Walsh and tangential Markov type inequalities for (the traces of) polynomials on algebraic sets.

How to cite

top

Baran, M., and Pleśniak, W.. "Polynomial inequalities on algebraic sets." Studia Mathematica 141.3 (2000): 209-219. <http://eudml.org/doc/216780>.

@article{Baran2000,
abstract = {We give an estimate of Siciak’s extremal function for compact subsets of algebraic varieties in $ℂ^n$ (resp. $ℝ^n$). As an application we obtain Bernstein-Walsh and tangential Markov type inequalities for (the traces of) polynomials on algebraic sets.},
author = {Baran, M., Pleśniak, W.},
journal = {Studia Mathematica},
keywords = {Bernstein-Walsh and tangential Markov type inequalities on algebraic sets; pluricomplex Green function; traces of polynomials on algebraic sets; Siciak's extremal function},
language = {eng},
number = {3},
pages = {209-219},
title = {Polynomial inequalities on algebraic sets},
url = {http://eudml.org/doc/216780},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Baran, M.
AU - Pleśniak, W.
TI - Polynomial inequalities on algebraic sets
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 3
SP - 209
EP - 219
AB - We give an estimate of Siciak’s extremal function for compact subsets of algebraic varieties in $ℂ^n$ (resp. $ℝ^n$). As an application we obtain Bernstein-Walsh and tangential Markov type inequalities for (the traces of) polynomials on algebraic sets.
LA - eng
KW - Bernstein-Walsh and tangential Markov type inequalities on algebraic sets; pluricomplex Green function; traces of polynomials on algebraic sets; Siciak's extremal function
UR - http://eudml.org/doc/216780
ER -

References

top
  1. [Ba] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994), 69-79. Zbl0824.41014
  2. [BaPl1] M. Baran and W. Pleśniak, Markov’s exponent of compact sets in n , Proc. Amer. Math. Soc. 123 (1995), 2785-2791. Zbl0841.41011
  3. [BaPl2] M. Baran and W. Pleśniak, Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves, Studia Math. 125 (1997), 83-96. Zbl0895.41011
  4. [BaPl3] M. Baran and W. Pleśniak, Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities, this issue, 221-234. Zbl0987.41005
  5. [BLMT1] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of N , Indiana Univ. Math. J. 44 (1995), 115-138. Zbl0824.41015
  6. [BLMT2] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities on real algebraic varieties, ibid. 47 (1998), 1257-1271. Zbl0938.32008
  7. [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in 2 , in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 125-134. Zbl0834.41012
  8. [Bru] A. Brudnyi, A Bernstein-type inequality for algebraic functions, Indiana Univ. Math. J. 46 (1997), 93-116. Zbl0876.26015
  9. [FeNa1] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993), 1319-1348. Zbl0842.26013
  10. [FeNa2] C. Fefferman and R. Narasimhan, On the polynomial-like behavior of certain algebraic functions, ibid. 44 (1994), 1091-1179. 
  11. [FeNa3] C. Fefferman and R. Narasimhan, A local Bernstein inequality on real algebraic varieties, Math. Z. 223 (1996), 673-692. Zbl0911.32011
  12. [Gen] L. Gendre, Inégalité de Markov tangentielle locale sur les courbes algébriques de n , Université Paul Sabatier de Toulouse, preprint, 1998. 
  13. [Iz] S. Izumi, A criterion for algebraicity on analytic set germs, Proc. Japan Acad. Ser. A 68 (1992), 307-309. Zbl0781.32012
  14. [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in n , Ark. Mat. 16 (1978), 109-115. Zbl0383.31003
  15. [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991. 
  16. [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. Zbl0747.32001
  17. [PaPl] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275 (1986), 467-480. Zbl0579.32020
  18. [Pl1] W. Pleśniak, Invariance of the L-regularity of compact sets in n under holomorphic mappings, Trans. Amer. Math. Soc. 246 (1978), 373-383. Zbl0409.32014
  19. [Pl2] W. Pleśniak, Compact subsets of n preserving Markov’s inequality, Mat. Vesnik 40 (1988), 295-300. Zbl0702.32007
  20. [Pl3] W. Pleśniak, Recent progress in multivariate Markov inequality, in: Approximation Theory, In Memory of A. K. Varma (N. K. Govil et al., eds.), Marcel Dekker, New York, 1998, 449-464. Zbl0984.41007
  21. [RoYo] N. Roytwarf and Y. Yomdin, Bernstein classes, Ann. Inst. Fourier (Grenoble) 47 (1997), 825-858. 
  22. [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502. Zbl0582.32023
  23. [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. Zbl0111.08102
  24. [Si2] J. Siciak, Extremal plurisubharmonic functions in n , Ann. Polon. Math. 39 (1981), 175-211. Zbl0477.32018
  25. [Tou] J.-C. Tougeron, Idéaux de fonctions différentiables, Springer, Berlin, 1972. Zbl0251.58001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.