On a variant of Kazhdan's property (T) for subgroups of semisimple groups

Mohammed Bachir Bekka; Nicolas Louvet

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 4, page 1065-1078
  • ISSN: 0373-0956

Abstract

top
Let Γ be an irreducible lattice in a product G of simple groups. Assume that G has a factor with property (T). We give a description of the topology in a neighbourhood of the trivial one dimensional representation of Γ in terms of the topology of the dual space G ^ of G .We use this result to give a new proof for the triviality of the first cohomology group of Γ with coefficients in a finite dimensional unitary representation.

How to cite

top

Bekka, Mohammed Bachir, and Louvet, Nicolas. "On a variant of Kazhdan's property (T) for subgroups of semisimple groups." Annales de l'institut Fourier 47.4 (1997): 1065-1078. <http://eudml.org/doc/75254>.

@article{Bekka1997,
abstract = {Let $\Gamma $ be an irreducible lattice in a product $G$ of simple groups. Assume that $G$ has a factor with property (T). We give a description of the topology in a neighbourhood of the trivial one dimensional representation of $\Gamma $ in terms of the topology of the dual space $\widehat\{G\}$ of $G$.We use this result to give a new proof for the triviality of the first cohomology group of $\Gamma $ with coefficients in a finite dimensional unitary representation.},
author = {Bekka, Mohammed Bachir, Louvet, Nicolas},
journal = {Annales de l'institut Fourier},
keywords = {discrete subgroups of Lie groups; Kazhdan's property; cohomology; unitary representation},
language = {eng},
number = {4},
pages = {1065-1078},
publisher = {Association des Annales de l'Institut Fourier},
title = {On a variant of Kazhdan's property (T) for subgroups of semisimple groups},
url = {http://eudml.org/doc/75254},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Bekka, Mohammed Bachir
AU - Louvet, Nicolas
TI - On a variant of Kazhdan's property (T) for subgroups of semisimple groups
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 1065
EP - 1078
AB - Let $\Gamma $ be an irreducible lattice in a product $G$ of simple groups. Assume that $G$ has a factor with property (T). We give a description of the topology in a neighbourhood of the trivial one dimensional representation of $\Gamma $ in terms of the topology of the dual space $\widehat{G}$ of $G$.We use this result to give a new proof for the triviality of the first cohomology group of $\Gamma $ with coefficients in a finite dimensional unitary representation.
LA - eng
KW - discrete subgroups of Lie groups; Kazhdan's property; cohomology; unitary representation
UR - http://eudml.org/doc/75254
ER -

References

top
  1. [Bor] A. BOREL, Some finiteness properties of adèles groups over numbers fields, Publ. Math. IHES, 16 (1963), 1-30. Zbl0135.08902
  2. [BoW] A. BOREL and N. WALLACH, Continuous cohomology, discrete subgroups and representations of reductive groups, Annals of Math. Studies, Princeton University Press, 1980. Zbl0443.22010
  3. [Del] P. DELORME, 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles Produits tensoriels continus de représentations, Bull. Soc. Math. France, 105 (1977), 281-336. Zbl0404.22006MR58 #28272
  4. [Dix] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969. Zbl0174.18601MR39 #7442
  5. [Fe1] J.M.G. FELL, Weak containment and induced representations of groups, Canad. J. Math., 14 (1962), 237-268. Zbl0138.07301MR27 #242
  6. [Fe2] J.M.G. FELL, Weak containment and Kronecker products of group representations, Pac. J. Math., 13 (1963), 503-510. Zbl0123.10102MR27 #5865
  7. [Gu1] A. GUICHARDET, Symmetric Hilbert spaces and related topics, Lecture Notes in Math., 261, Springer, 1972. Zbl0265.43008
  8. [Gu2] A. GUICHARDET, Cohomologie des groupes localement compacts et produits tensoriels continus de représentations, J. Multivariate Anal., 6 (1976), 138-158. Zbl0324.60005MR54 #12963
  9. [Gu3] A. GUICHARDET, Tensor products of C*-algebras, Part II, Lecture Notes Series, 13, Aarhus Universitet, 1969. Zbl0228.46056
  10. [Hum] J.E. HUMPHREYS, Arithmetic groups, Lecture Notes in Math., 789, Springer, 1980. Zbl0426.20029MR82j:10041
  11. [HaV] P. de la HARPE et A. VALETTE, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 75, Soc. Math. de France, 1989. Zbl0759.22001
  12. [Lub] A. LUBOTZKY, Discrete groups, expanding graphs and invariant measures, Progress in Math. 125, Birkhäuser, 1994. Zbl0826.22012MR96g:22018
  13. [LuZ] A. LUBOTZKY and R.J. ZIMMER, Variants of Kazhdan's property for subgroup of semisimple groups, Israel J. of Math., 66 (1989), 289-298. Zbl0706.22010MR90i:22020
  14. [Mar] G.A. MARGULIS, Discrete subgroups of semisimple Lie groups, Springer, 1991. Zbl0732.22008MR92h:22021
  15. [VeK] A.M. VERSHIK and S.I. KARPUSHEV, Cohomology of groups in unitary representations, the neighbourhood of the identity and conditionally positive definite functions, Math. USSR Sbornik, 47 (1984), 513-526. Zbl0528.43005
  16. [Zim] R.J. ZIMMER, Ergodic theory and semisimple groups, Birkhäuser, Boston, 1984. Zbl0571.58015MR86j:22014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.