Extension and restriction of holomorphic functions

Klas Diederich; Emmanuel Mazzilli

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 4, page 1079-1099
  • ISSN: 0373-0956

Abstract

top
Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds D ' of pseudoconvex domains D to all of D even in quite simple situations; The spaces A p ( D ' ) : = 𝒪 ( D ' ) L p ( D ' ) are, in general, not at all preserved. Also the image of the Hilbert space A 2 ( D ) under the restriction to D ' can have a very strange structure.

How to cite

top

Diederich, Klas, and Mazzilli, Emmanuel. "Extension and restriction of holomorphic functions." Annales de l'institut Fourier 47.4 (1997): 1079-1099. <http://eudml.org/doc/75255>.

@article{Diederich1997,
abstract = {Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds $ D^\{\prime \}$ of pseudoconvex domains $ D$ to all of $ D$ even in quite simple situations; The spaces $A^\{p\}(D^\{\prime \}):=\{\cal O\}(D^\{\prime \})\cap L^\{p\}(D^\{\prime \})$ are, in general, not at all preserved. Also the image of the Hilbert space $ A^\{2\}(D)$ under the restriction to $ D^\{\prime \}$ can have a very strange structure.},
author = {Diederich, Klas, Mazzilli, Emmanuel},
journal = {Annales de l'institut Fourier},
keywords = {extension of holomorphic functions; -spaces; weighted Bergman spaces; pseudoellipsoids},
language = {eng},
number = {4},
pages = {1079-1099},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extension and restriction of holomorphic functions},
url = {http://eudml.org/doc/75255},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Diederich, Klas
AU - Mazzilli, Emmanuel
TI - Extension and restriction of holomorphic functions
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 1079
EP - 1099
AB - Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds $ D^{\prime }$ of pseudoconvex domains $ D$ to all of $ D$ even in quite simple situations; The spaces $A^{p}(D^{\prime }):={\cal O}(D^{\prime })\cap L^{p}(D^{\prime })$ are, in general, not at all preserved. Also the image of the Hilbert space $ A^{2}(D)$ under the restriction to $ D^{\prime }$ can have a very strange structure.
LA - eng
KW - extension of holomorphic functions; -spaces; weighted Bergman spaces; pseudoellipsoids
UR - http://eudml.org/doc/75255
ER -

References

top
  1. [1] E. AMAR, Extension de fonctions holomorphes et courants, Bull. Sc. Math., 107 (1983), 25-48. Zbl0543.32007MR85c:32025
  2. [2] E. AMAR, Extension de fonctions holomorphes et intégrales singulières, C.R. Acad. Sc. Paris, 299 (1984), 371-374. Zbl0587.32023MR85k:32026
  3. [3] B. BERNDTSSON, M. ANDERSSON, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-110. Zbl0466.32001MR84j:32003
  4. [4] A. CUMENGE, Extension dans les classes de Hardy de fonctions holomorphes, Ph.D. thesis, Université Paul Sabatier Toulouse, 1980. Zbl0431.32003
  5. [5] J.-P. DEMAILLY, Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. Zbl0777.32016MR93e:32015
  6. [6] J.-P. DEMAILLY, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry (Ancona, V., Silva, A., eds.), Plenum Press, 1993, pp. 115-193. Zbl0792.32006
  7. [7] J.-P. DEMAILLY, Effective bounds for very ample line bundles, Invent. Math., 124 (1996), 243-261. Zbl0862.14004MR97a:32035
  8. [8] K. DIEDERICH, J.-E. FORNæSS, Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. Zbl0378.32014MR57 #16696
  9. [9] K. DIEDERICH, G. HERBORT, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. Zbl0759.32002MR93h:32016
  10. [10] K. DIEDERICH, G. HERBORT, Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis, 3 (1993), 237-267. Zbl0786.32016MR94m:32033
  11. [11] K. Diederich, G. Herbort, G., Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (Trépreau, H., Skoda, J. M., eds.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. Zbl0845.32019MR96b:32019
  12. [12] K. DIEDERICH, G. HERBORT, T. OHSAWA, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 471-478. Zbl0582.32028MR87g:32027
  13. [13] G.-M. HENKIN, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Math. USSR Izvestija, 6 (1972), 536-563. Zbl0255.32008MR46 #7558
  14. [14] G.-M. HENKIN, J. LEITERER, Theory of Functions on Complex Manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984. Zbl0726.32001MR86a:32002
  15. [15] E. MAZZILLI, Division et extension des fonctions holomorphes dans les ellipsoides, Ph.D. thesis, Universit Paul Sabatier de Toulouse, 1995. 
  16. [16] E. MAZZILLI, Extension des fonctions holomorphes, C.R. Acad. Sci. Paris, 321 (1995), 837-841. Zbl0846.32015MR96i:32010
  17. [17] E. MAZZILLI, Extension des fonctions holomorphes dans les pseudo-ellipsoides, to appear in Math. Z., 1996. 
  18. [18] T. OHSAWA, On the extension of L2-holomorphic functions II, Publ. RIMS Kyoto Univ., 24 (1988), 265-275. Zbl0653.32012MR89d:32031
  19. [19] T. OHSAWA, On the extension of L2-holomorphic functions III: negligible weights, Math. Z., 219 (1995), 215-226. Zbl0823.32006MR96h:32011
  20. [20] T. OHSAWA, K. TAKEGOSHI, On the extension of L2-holomorphic functions, Math. Z., 195 (1987), 197-204. Zbl0625.32011MR88g:32029
  21. [21] Y. T. SIU, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Preprint, 1995. Zbl0941.32021
  22. [22] H. SKODA, Applications de techniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup. Paris, 5 (1972), 545-579. Zbl0254.32017MR48 #11571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.