Extension and restriction of holomorphic functions
Klas Diederich; Emmanuel Mazzilli
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 4, page 1079-1099
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDiederich, Klas, and Mazzilli, Emmanuel. "Extension and restriction of holomorphic functions." Annales de l'institut Fourier 47.4 (1997): 1079-1099. <http://eudml.org/doc/75255>.
@article{Diederich1997,
abstract = {Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds $ D^\{\prime \}$ of pseudoconvex domains $ D$ to all of $ D$ even in quite simple situations; The spaces $A^\{p\}(D^\{\prime \}):=\{\cal O\}(D^\{\prime \})\cap L^\{p\}(D^\{\prime \})$ are, in general, not at all preserved. Also the image of the Hilbert space $ A^\{2\}(D)$ under the restriction to $ D^\{\prime \}$ can have a very strange structure.},
author = {Diederich, Klas, Mazzilli, Emmanuel},
journal = {Annales de l'institut Fourier},
keywords = {extension of holomorphic functions; -spaces; weighted Bergman spaces; pseudoellipsoids},
language = {eng},
number = {4},
pages = {1079-1099},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extension and restriction of holomorphic functions},
url = {http://eudml.org/doc/75255},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Diederich, Klas
AU - Mazzilli, Emmanuel
TI - Extension and restriction of holomorphic functions
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 1079
EP - 1099
AB - Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds $ D^{\prime }$ of pseudoconvex domains $ D$ to all of $ D$ even in quite simple situations; The spaces $A^{p}(D^{\prime }):={\cal O}(D^{\prime })\cap L^{p}(D^{\prime })$ are, in general, not at all preserved. Also the image of the Hilbert space $ A^{2}(D)$ under the restriction to $ D^{\prime }$ can have a very strange structure.
LA - eng
KW - extension of holomorphic functions; -spaces; weighted Bergman spaces; pseudoellipsoids
UR - http://eudml.org/doc/75255
ER -
References
top- [1] E. AMAR, Extension de fonctions holomorphes et courants, Bull. Sc. Math., 107 (1983), 25-48. Zbl0543.32007MR85c:32025
- [2] E. AMAR, Extension de fonctions holomorphes et intégrales singulières, C.R. Acad. Sc. Paris, 299 (1984), 371-374. Zbl0587.32023MR85k:32026
- [3] B. BERNDTSSON, M. ANDERSSON, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-110. Zbl0466.32001MR84j:32003
- [4] A. CUMENGE, Extension dans les classes de Hardy de fonctions holomorphes, Ph.D. thesis, Université Paul Sabatier Toulouse, 1980. Zbl0431.32003
- [5] J.-P. DEMAILLY, Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. Zbl0777.32016MR93e:32015
- [6] J.-P. DEMAILLY, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry (Ancona, V., Silva, A., eds.), Plenum Press, 1993, pp. 115-193. Zbl0792.32006
- [7] J.-P. DEMAILLY, Effective bounds for very ample line bundles, Invent. Math., 124 (1996), 243-261. Zbl0862.14004MR97a:32035
- [8] K. DIEDERICH, J.-E. FORNæSS, Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. Zbl0378.32014MR57 #16696
- [9] K. DIEDERICH, G. HERBORT, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. Zbl0759.32002MR93h:32016
- [10] K. DIEDERICH, G. HERBORT, Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis, 3 (1993), 237-267. Zbl0786.32016MR94m:32033
- [11] K. Diederich, G. Herbort, G., Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (Trépreau, H., Skoda, J. M., eds.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. Zbl0845.32019MR96b:32019
- [12] K. DIEDERICH, G. HERBORT, T. OHSAWA, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 471-478. Zbl0582.32028MR87g:32027
- [13] G.-M. HENKIN, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Math. USSR Izvestija, 6 (1972), 536-563. Zbl0255.32008MR46 #7558
- [14] G.-M. HENKIN, J. LEITERER, Theory of Functions on Complex Manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984. Zbl0726.32001MR86a:32002
- [15] E. MAZZILLI, Division et extension des fonctions holomorphes dans les ellipsoides, Ph.D. thesis, Universit Paul Sabatier de Toulouse, 1995.
- [16] E. MAZZILLI, Extension des fonctions holomorphes, C.R. Acad. Sci. Paris, 321 (1995), 837-841. Zbl0846.32015MR96i:32010
- [17] E. MAZZILLI, Extension des fonctions holomorphes dans les pseudo-ellipsoides, to appear in Math. Z., 1996.
- [18] T. OHSAWA, On the extension of L2-holomorphic functions II, Publ. RIMS Kyoto Univ., 24 (1988), 265-275. Zbl0653.32012MR89d:32031
- [19] T. OHSAWA, On the extension of L2-holomorphic functions III: negligible weights, Math. Z., 219 (1995), 215-226. Zbl0823.32006MR96h:32011
- [20] T. OHSAWA, K. TAKEGOSHI, On the extension of L2-holomorphic functions, Math. Z., 195 (1987), 197-204. Zbl0625.32011MR88g:32029
- [21] Y. T. SIU, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Preprint, 1995. Zbl0941.32021
- [22] H. SKODA, Applications de techniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup. Paris, 5 (1972), 545-579. Zbl0254.32017MR48 #11571
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.