On deformation method in invariant theory
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 4, page 985-1012
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. ANDRUSKIEWITSCH, H. TIRAO, A restriction theorem for modules having a spherical submodule, Trans. Amer. Math. Soc., 331 (1992), 705-725. Zbl0760.14006MR92h:14034
- [2] N. BEKLEMISHEV, Algebras invariants of forms that are complete intersections, Math. USSR Izv., 23 (1984), 423-429. Zbl0582.14019
- [3] W. BORHO, H. KRAFT, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv., 54 (1979), 61-104. Zbl0395.14013MR82m:14027
- [4] M. BRION, Sur la théorie des invariants, Publ. Math. Univ. Pierre et Marie Curie, 45 (1981), 1-92. Zbl0544.14003
- [5] M. BRION, Représentations exceptionnelles des groupes semi-simples. Ann. Sci. Éc. Norm. Sup., IV Sér., 18 (1985), 345-387. Zbl0588.22010MR87e:14043
- [6] M. BRION, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., 55 (1986), 191-198. Zbl0604.14048MR87g:14054
- [7] W. BRUNS, J. HERZOG, Cohen-Macaulay rings, Cambridge University Press, 1993. Zbl0788.13005MR95h:13020
- [8] F.D. GROSSHANS, The invariants of unipotent radicals of parabolic subgroups, Invent. Math., 73 (1983), 1-9. Zbl0501.14007MR85c:14029
- [9] F.D. GROSSHANS, Contractions of the actions of reductive groups in arbitrary characteristic, Invent. Math., 107 (1992), 127-133. Zbl0778.20018MR93b:14072
- [10] R. HOWE, R. HUANG, Projective invariants of four subspaces, Adv. in Math., 118 (1996), 295-336. Zbl0852.15021MR97b:13005
- [11] R. HOWE, T. UMEDA, The Capelly identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., 290 (1991), 565-619. Zbl0733.20019
- [12] F. KNOP, Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427. Zbl0585.14033MR88f:14041
- [13] F. KNOP, Der kanonische Modul eines Invariantenrings, J. Algebra, 127 (1989), 40-54. Zbl0716.20021MR90k:14053
- [14] F. KNOP, Weylgruppe und Momentabbildung, Invent. Math., 99 (1990), 1-23. Zbl0726.20031MR91f:14045
- [15] F. KNOP, Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., 213 (1993), 33-36. Zbl0788.14042MR94b:14050
- [16] M. KRÄMER, Sphärische Untergruppen in kompakten zusammenhängender Lie Gruppen, Compositio Math., 38 (1979), 129-153. Zbl0402.22006
- [17] P. LITTELMANN, On spherical double cones, J. Algebra, 166 (1994), 142-157. Zbl0823.20040MR95c:14066
- [18] N. MOHAN KUMAR, Complete intersections, J. Math. Kyoto Univ., 17 (1977), 533-538. Zbl0384.14016MR57 #12540
- [19] H. NAKAJIMA, Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. Zbl0575.20036MR87h:20069
- [20] D. PANYUSHEV, Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269. Zbl0706.14032MR92e:14046
- [21] D. PANYUSHEV, Complexity and rank of double cones and tensor product decompositions, Comment. Math. Helv., 68 (1993), 455-468. Zbl0804.14024MR94g:14025
- [22] D. PANYUSHEV, A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675. Zbl0820.14033MR96d:13005
- [23] D. PANYUSHEV, Reductive group actions on affine varieties and their doubling, Ann. Inst. Fourier, 45-4 (1995), 929-950. Zbl0831.14022MR96i:14039
- [24] D. PANYUSHEV, Good properties of algebras of invariants and defect of linear representations, Journal of Lie Theory, 5 (1995), 81-99. Zbl0845.14008MR96j:14034
- [25] F. PAUER, Sur les espaces homogènes de complication nulle, Bull. Soc. Math. France, 112 (1984), 377-385. Zbl0576.20029MR86j:20040
- [26] V.L. POPOV, Contractions of actions of reductive algebraic groups, Math. USSR Sb., 58 (1987), 311-335. Zbl0627.14033
- [27] R. STANLEY, Hilbert functions of graded algebras, Adv. Math., 28 (1978), 57-83. Zbl0384.13012MR58 #5637
- [28] E.B. VINBERG, Complexity of actions of reductive groups, Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077
- [29] E.B. VINBERG, B.N. KIMEL'FEL'D, Homogeneous domains on flag varieties and spherical subgroups of semisimple Lie groups, Funct. Anal. Appl., 12 (1978), 168-174. Zbl0439.53055MR82e:32042
- [30] A.L. ONISHCHIK, E.B. VINBERG, Lie groups and algebraic groups, Berlin Heidelberg New York, Springer, 1990. Zbl0722.22004MR91g:22001
- [31] E.B. VINBERG, V.L. POPOV, On a class of quasihomogeneous affine varieties, Math. USSR Izv., 6 (1972), 743-758. Zbl0255.14016MR47 #1815
- [32] V.L. POPOV, E.B. VINBERG, Invariant theory, In: Parshin, A.N., Shafarevich, I.R. (Eds.): Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp. 123-284) Berlin Heidelberg New York: Springer, 1994. Zbl0789.14008
- [33] Th. VUST, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France, 102 (1974), 317-333. Zbl0332.22018MR51 #3187