On deformation method in invariant theory
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 4, page 985-1012
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPanyushev, Dmitri. "On deformation method in invariant theory." Annales de l'institut Fourier 47.4 (1997): 985-1012. <http://eudml.org/doc/75262>.
@article{Panyushev1997,
abstract = {In this paper we relate the deformation method in invariant theory to spherical subgroups. Let $G$ be a reductive group, $Z$ an affine $G$-variety and $H\subset G$ a spherical subgroup. We show that whenever $G/H$ is affine and its semigroup of weights is saturated, the algebra of $H$-invariant regular functions on $Z$ has a $G$-invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of $G$. The deformation method in its usual form, as developed by Luna et al., is a particular case of this construction. Our result also applies to the description of invariants of some reducible representations of reductive groups.New applications of the deformation method are given which concern the property of being complete intersection for algebras of invariants. We also give some applications of the deformation method to doubled actions.},
author = {Panyushev, Dmitri},
journal = {Annales de l'institut Fourier},
keywords = {algebra of invariants; reductive group action; complete intersection; spherical variety; deformation},
language = {eng},
number = {4},
pages = {985-1012},
publisher = {Association des Annales de l'Institut Fourier},
title = {On deformation method in invariant theory},
url = {http://eudml.org/doc/75262},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Panyushev, Dmitri
TI - On deformation method in invariant theory
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 985
EP - 1012
AB - In this paper we relate the deformation method in invariant theory to spherical subgroups. Let $G$ be a reductive group, $Z$ an affine $G$-variety and $H\subset G$ a spherical subgroup. We show that whenever $G/H$ is affine and its semigroup of weights is saturated, the algebra of $H$-invariant regular functions on $Z$ has a $G$-invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of $G$. The deformation method in its usual form, as developed by Luna et al., is a particular case of this construction. Our result also applies to the description of invariants of some reducible representations of reductive groups.New applications of the deformation method are given which concern the property of being complete intersection for algebras of invariants. We also give some applications of the deformation method to doubled actions.
LA - eng
KW - algebra of invariants; reductive group action; complete intersection; spherical variety; deformation
UR - http://eudml.org/doc/75262
ER -
References
top- [1] N. ANDRUSKIEWITSCH, H. TIRAO, A restriction theorem for modules having a spherical submodule, Trans. Amer. Math. Soc., 331 (1992), 705-725. Zbl0760.14006MR92h:14034
- [2] N. BEKLEMISHEV, Algebras invariants of forms that are complete intersections, Math. USSR Izv., 23 (1984), 423-429. Zbl0582.14019
- [3] W. BORHO, H. KRAFT, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv., 54 (1979), 61-104. Zbl0395.14013MR82m:14027
- [4] M. BRION, Sur la théorie des invariants, Publ. Math. Univ. Pierre et Marie Curie, 45 (1981), 1-92. Zbl0544.14003
- [5] M. BRION, Représentations exceptionnelles des groupes semi-simples. Ann. Sci. Éc. Norm. Sup., IV Sér., 18 (1985), 345-387. Zbl0588.22010MR87e:14043
- [6] M. BRION, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., 55 (1986), 191-198. Zbl0604.14048MR87g:14054
- [7] W. BRUNS, J. HERZOG, Cohen-Macaulay rings, Cambridge University Press, 1993. Zbl0788.13005MR95h:13020
- [8] F.D. GROSSHANS, The invariants of unipotent radicals of parabolic subgroups, Invent. Math., 73 (1983), 1-9. Zbl0501.14007MR85c:14029
- [9] F.D. GROSSHANS, Contractions of the actions of reductive groups in arbitrary characteristic, Invent. Math., 107 (1992), 127-133. Zbl0778.20018MR93b:14072
- [10] R. HOWE, R. HUANG, Projective invariants of four subspaces, Adv. in Math., 118 (1996), 295-336. Zbl0852.15021MR97b:13005
- [11] R. HOWE, T. UMEDA, The Capelly identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., 290 (1991), 565-619. Zbl0733.20019
- [12] F. KNOP, Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427. Zbl0585.14033MR88f:14041
- [13] F. KNOP, Der kanonische Modul eines Invariantenrings, J. Algebra, 127 (1989), 40-54. Zbl0716.20021MR90k:14053
- [14] F. KNOP, Weylgruppe und Momentabbildung, Invent. Math., 99 (1990), 1-23. Zbl0726.20031MR91f:14045
- [15] F. KNOP, Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., 213 (1993), 33-36. Zbl0788.14042MR94b:14050
- [16] M. KRÄMER, Sphärische Untergruppen in kompakten zusammenhängender Lie Gruppen, Compositio Math., 38 (1979), 129-153. Zbl0402.22006
- [17] P. LITTELMANN, On spherical double cones, J. Algebra, 166 (1994), 142-157. Zbl0823.20040MR95c:14066
- [18] N. MOHAN KUMAR, Complete intersections, J. Math. Kyoto Univ., 17 (1977), 533-538. Zbl0384.14016MR57 #12540
- [19] H. NAKAJIMA, Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. Zbl0575.20036MR87h:20069
- [20] D. PANYUSHEV, Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269. Zbl0706.14032MR92e:14046
- [21] D. PANYUSHEV, Complexity and rank of double cones and tensor product decompositions, Comment. Math. Helv., 68 (1993), 455-468. Zbl0804.14024MR94g:14025
- [22] D. PANYUSHEV, A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675. Zbl0820.14033MR96d:13005
- [23] D. PANYUSHEV, Reductive group actions on affine varieties and their doubling, Ann. Inst. Fourier, 45-4 (1995), 929-950. Zbl0831.14022MR96i:14039
- [24] D. PANYUSHEV, Good properties of algebras of invariants and defect of linear representations, Journal of Lie Theory, 5 (1995), 81-99. Zbl0845.14008MR96j:14034
- [25] F. PAUER, Sur les espaces homogènes de complication nulle, Bull. Soc. Math. France, 112 (1984), 377-385. Zbl0576.20029MR86j:20040
- [26] V.L. POPOV, Contractions of actions of reductive algebraic groups, Math. USSR Sb., 58 (1987), 311-335. Zbl0627.14033
- [27] R. STANLEY, Hilbert functions of graded algebras, Adv. Math., 28 (1978), 57-83. Zbl0384.13012MR58 #5637
- [28] E.B. VINBERG, Complexity of actions of reductive groups, Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077
- [29] E.B. VINBERG, B.N. KIMEL'FEL'D, Homogeneous domains on flag varieties and spherical subgroups of semisimple Lie groups, Funct. Anal. Appl., 12 (1978), 168-174. Zbl0439.53055MR82e:32042
- [30] A.L. ONISHCHIK, E.B. VINBERG, Lie groups and algebraic groups, Berlin Heidelberg New York, Springer, 1990. Zbl0722.22004MR91g:22001
- [31] E.B. VINBERG, V.L. POPOV, On a class of quasihomogeneous affine varieties, Math. USSR Izv., 6 (1972), 743-758. Zbl0255.14016MR47 #1815
- [32] V.L. POPOV, E.B. VINBERG, Invariant theory, In: Parshin, A.N., Shafarevich, I.R. (Eds.): Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp. 123-284) Berlin Heidelberg New York: Springer, 1994. Zbl0789.14008
- [33] Th. VUST, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France, 102 (1974), 317-333. Zbl0332.22018MR51 #3187
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.