On deformation method in invariant theory

Dmitri Panyushev

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 4, page 985-1012
  • ISSN: 0373-0956

Abstract

top
In this paper we relate the deformation method in invariant theory to spherical subgroups. Let G be a reductive group, Z an affine G -variety and H G a spherical subgroup. We show that whenever G / H is affine and its semigroup of weights is saturated, the algebra of H -invariant regular functions on Z has a G -invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of G . The deformation method in its usual form, as developed by Luna et al., is a particular case of this construction. Our result also applies to the description of invariants of some reducible representations of reductive groups.New applications of the deformation method are given which concern the property of being complete intersection for algebras of invariants. We also give some applications of the deformation method to doubled actions.

How to cite

top

Panyushev, Dmitri. "On deformation method in invariant theory." Annales de l'institut Fourier 47.4 (1997): 985-1012. <http://eudml.org/doc/75262>.

@article{Panyushev1997,
abstract = {In this paper we relate the deformation method in invariant theory to spherical subgroups. Let $G$ be a reductive group, $Z$ an affine $G$-variety and $H\subset G$ a spherical subgroup. We show that whenever $G/H$ is affine and its semigroup of weights is saturated, the algebra of $H$-invariant regular functions on $Z$ has a $G$-invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of $G$. The deformation method in its usual form, as developed by Luna et al., is a particular case of this construction. Our result also applies to the description of invariants of some reducible representations of reductive groups.New applications of the deformation method are given which concern the property of being complete intersection for algebras of invariants. We also give some applications of the deformation method to doubled actions.},
author = {Panyushev, Dmitri},
journal = {Annales de l'institut Fourier},
keywords = {algebra of invariants; reductive group action; complete intersection; spherical variety; deformation},
language = {eng},
number = {4},
pages = {985-1012},
publisher = {Association des Annales de l'Institut Fourier},
title = {On deformation method in invariant theory},
url = {http://eudml.org/doc/75262},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Panyushev, Dmitri
TI - On deformation method in invariant theory
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 985
EP - 1012
AB - In this paper we relate the deformation method in invariant theory to spherical subgroups. Let $G$ be a reductive group, $Z$ an affine $G$-variety and $H\subset G$ a spherical subgroup. We show that whenever $G/H$ is affine and its semigroup of weights is saturated, the algebra of $H$-invariant regular functions on $Z$ has a $G$-invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of $G$. The deformation method in its usual form, as developed by Luna et al., is a particular case of this construction. Our result also applies to the description of invariants of some reducible representations of reductive groups.New applications of the deformation method are given which concern the property of being complete intersection for algebras of invariants. We also give some applications of the deformation method to doubled actions.
LA - eng
KW - algebra of invariants; reductive group action; complete intersection; spherical variety; deformation
UR - http://eudml.org/doc/75262
ER -

References

top
  1. [1] N. ANDRUSKIEWITSCH, H. TIRAO, A restriction theorem for modules having a spherical submodule, Trans. Amer. Math. Soc., 331 (1992), 705-725. Zbl0760.14006MR92h:14034
  2. [2] N. BEKLEMISHEV, Algebras invariants of forms that are complete intersections, Math. USSR Izv., 23 (1984), 423-429. Zbl0582.14019
  3. [3] W. BORHO, H. KRAFT, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv., 54 (1979), 61-104. Zbl0395.14013MR82m:14027
  4. [4] M. BRION, Sur la théorie des invariants, Publ. Math. Univ. Pierre et Marie Curie, 45 (1981), 1-92. Zbl0544.14003
  5. [5] M. BRION, Représentations exceptionnelles des groupes semi-simples. Ann. Sci. Éc. Norm. Sup., IV Sér., 18 (1985), 345-387. Zbl0588.22010MR87e:14043
  6. [6] M. BRION, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., 55 (1986), 191-198. Zbl0604.14048MR87g:14054
  7. [7] W. BRUNS, J. HERZOG, Cohen-Macaulay rings, Cambridge University Press, 1993. Zbl0788.13005MR95h:13020
  8. [8] F.D. GROSSHANS, The invariants of unipotent radicals of parabolic subgroups, Invent. Math., 73 (1983), 1-9. Zbl0501.14007MR85c:14029
  9. [9] F.D. GROSSHANS, Contractions of the actions of reductive groups in arbitrary characteristic, Invent. Math., 107 (1992), 127-133. Zbl0778.20018MR93b:14072
  10. [10] R. HOWE, R. HUANG, Projective invariants of four subspaces, Adv. in Math., 118 (1996), 295-336. Zbl0852.15021MR97b:13005
  11. [11] R. HOWE, T. UMEDA, The Capelly identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., 290 (1991), 565-619. Zbl0733.20019
  12. [12] F. KNOP, Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427. Zbl0585.14033MR88f:14041
  13. [13] F. KNOP, Der kanonische Modul eines Invariantenrings, J. Algebra, 127 (1989), 40-54. Zbl0716.20021MR90k:14053
  14. [14] F. KNOP, Weylgruppe und Momentabbildung, Invent. Math., 99 (1990), 1-23. Zbl0726.20031MR91f:14045
  15. [15] F. KNOP, Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., 213 (1993), 33-36. Zbl0788.14042MR94b:14050
  16. [16] M. KRÄMER, Sphärische Untergruppen in kompakten zusammenhängender Lie Gruppen, Compositio Math., 38 (1979), 129-153. Zbl0402.22006
  17. [17] P. LITTELMANN, On spherical double cones, J. Algebra, 166 (1994), 142-157. Zbl0823.20040MR95c:14066
  18. [18] N. MOHAN KUMAR, Complete intersections, J. Math. Kyoto Univ., 17 (1977), 533-538. Zbl0384.14016MR57 #12540
  19. [19] H. NAKAJIMA, Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. Zbl0575.20036MR87h:20069
  20. [20] D. PANYUSHEV, Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269. Zbl0706.14032MR92e:14046
  21. [21] D. PANYUSHEV, Complexity and rank of double cones and tensor product decompositions, Comment. Math. Helv., 68 (1993), 455-468. Zbl0804.14024MR94g:14025
  22. [22] D. PANYUSHEV, A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675. Zbl0820.14033MR96d:13005
  23. [23] D. PANYUSHEV, Reductive group actions on affine varieties and their doubling, Ann. Inst. Fourier, 45-4 (1995), 929-950. Zbl0831.14022MR96i:14039
  24. [24] D. PANYUSHEV, Good properties of algebras of invariants and defect of linear representations, Journal of Lie Theory, 5 (1995), 81-99. Zbl0845.14008MR96j:14034
  25. [25] F. PAUER, Sur les espaces homogènes de complication nulle, Bull. Soc. Math. France, 112 (1984), 377-385. Zbl0576.20029MR86j:20040
  26. [26] V.L. POPOV, Contractions of actions of reductive algebraic groups, Math. USSR Sb., 58 (1987), 311-335. Zbl0627.14033
  27. [27] R. STANLEY, Hilbert functions of graded algebras, Adv. Math., 28 (1978), 57-83. Zbl0384.13012MR58 #5637
  28. [28] E.B. VINBERG, Complexity of actions of reductive groups, Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077
  29. [29] E.B. VINBERG, B.N. KIMEL'FEL'D, Homogeneous domains on flag varieties and spherical subgroups of semisimple Lie groups, Funct. Anal. Appl., 12 (1978), 168-174. Zbl0439.53055MR82e:32042
  30. [30] A.L. ONISHCHIK, E.B. VINBERG, Lie groups and algebraic groups, Berlin Heidelberg New York, Springer, 1990. Zbl0722.22004MR91g:22001
  31. [31] E.B. VINBERG, V.L. POPOV, On a class of quasihomogeneous affine varieties, Math. USSR Izv., 6 (1972), 743-758. Zbl0255.14016MR47 #1815
  32. [32] V.L. POPOV, E.B. VINBERG, Invariant theory, In: Parshin, A.N., Shafarevich, I.R. (Eds.): Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp. 123-284) Berlin Heidelberg New York: Springer, 1994. Zbl0789.14008
  33. [33] Th. VUST, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France, 102 (1974), 317-333. Zbl0332.22018MR51 #3187

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.