Leibniz cohomology for differentiable manifolds

Jerry M. Lodder

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 1, page 73-95
  • ISSN: 0373-0956

Abstract

top
We propose a definition of Leibniz cohomology, H L * , for differentiable manifolds. Then H L * becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of H L * ( R n ; R ) reduce to those of formal vector fields, and can be identified with certain invariants of foliations.

How to cite

top

Lodder, Jerry M.. "Leibniz cohomology for differentiable manifolds." Annales de l'institut Fourier 48.1 (1998): 73-95. <http://eudml.org/doc/75282>.

@article{Lodder1998,
abstract = {We propose a definition of Leibniz cohomology, $HL^*$, for differentiable manifolds. Then $HL^*$ becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of $HL^* (\{\bf R\}^n; \{\bf R\})$ reduce to those of formal vector fields, and can be identified with certain invariants of foliations.},
author = {Lodder, Jerry M.},
journal = {Annales de l'institut Fourier},
keywords = {Leibniz cohomology; foliations; differentiable manifolds; Gelfand-Fuks cohomology; Leibniz algebras; continuous Leibniz cohomology},
language = {eng},
number = {1},
pages = {73-95},
publisher = {Association des Annales de l'Institut Fourier},
title = {Leibniz cohomology for differentiable manifolds},
url = {http://eudml.org/doc/75282},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Lodder, Jerry M.
TI - Leibniz cohomology for differentiable manifolds
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 73
EP - 95
AB - We propose a definition of Leibniz cohomology, $HL^*$, for differentiable manifolds. Then $HL^*$ becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of $HL^* ({\bf R}^n; {\bf R})$ reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
LA - eng
KW - Leibniz cohomology; foliations; differentiable manifolds; Gelfand-Fuks cohomology; Leibniz algebras; continuous Leibniz cohomology
UR - http://eudml.org/doc/75282
ER -

References

top
  1. [B] R. BOTT, Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics, 279 (1972), 1-94. Zbl0241.57010MR50 #14777
  2. [BS] R. BOTT, G. SEGAL, The Cohomology of the Vector Fields on a Manifold, Topology, 16 (1977), 285-298. Zbl0387.57012MR58 #31102
  3. [CE] C. CHEVALLEY, S. EILENBERG, Cohomology Theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124. Zbl0031.24803MR9,567a
  4. [C] A. CONNES, Géométrie Non Commutative, Inter Editions, Paris, 1990. Zbl0745.46067
  5. [F] D.B. FUKS, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, 1986 (A.B. Sosinskii translator). Zbl0667.17005MR88b:17001
  6. [GK] V. GINZBURG, M.M. KAPRANOV, Koszul Duality for Operads, Duke Jour. Math., 76-1 (1994), 203-272. Zbl0855.18006MR96a:18004
  7. [Gb] C. GODBILLON, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 421 (1972). Zbl0296.17010
  8. [Gw] T.G. GOODWILLIE, Relative Algebraic K-Theory and Cyclic Homology, Annals of Math., 124 (1986), 347-402. Zbl0627.18004MR88b:18008
  9. [H] A. HAEFLIGER, Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 412 (1972). Zbl0257.57011
  10. [HS] G. HOCHSCHILDJ.-P. SERRE, Cohomology of Lie Algebras, Ann. of Math., 57 (1953), 591-603. Zbl0053.01402MR14,943c
  11. [K] V. KAČ, Vertex Algebras for Beginners, Am. Math. Soc., Univ. Lecture Series, 10 (1996). Zbl0861.17017
  12. [K-S] Y. KOSMANN-SCHWARZBACH, From Poisson Algebras to Gerstenhaber Algebra, Ann. Inst. Fourier, Grenoble, 46-5 (1996), 1243-1274. Zbl0858.17027MR98b:17032
  13. [L1] J.-L. LODAY, Cyclic Homology, Grund. Math. Wissen. 301, Springer Verlag, 1992. Zbl0780.18009MR94a:19004
  14. [L2] J.-L. LODAY, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. Zbl0806.55009MR95a:19004
  15. [L3] J.-L. LODAY, Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77-2 (1995), 189-196. Zbl0859.17015MR96m:17001
  16. [L4] J.-L. LODAY, La Renaissance des Opérades, Séminaire Bourbaki, 792 (1994-1995). Zbl0866.18007
  17. [LP] J.-L. LODAY, T. PIRASHVILI, Universal Enveloping Algebras of Leibniz Algebras and (Co)-homology, Math. Annalen, 296 (1993), 139-158. Zbl0821.17022MR94j:17003
  18. [P] T. PIRASHVILI, On Leibniz Homology, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 401-411. Zbl0821.17023MR96f:17030
  19. [S] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Inc. (1979). Zbl0439.53001
  20. [W] H. WEYL, The Classical Groups, Princeton University Press, 1946. Zbl1024.20502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.