Leibniz cohomology for differentiable manifolds
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 1, page 73-95
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLodder, Jerry M.. "Leibniz cohomology for differentiable manifolds." Annales de l'institut Fourier 48.1 (1998): 73-95. <http://eudml.org/doc/75282>.
@article{Lodder1998,
abstract = {We propose a definition of Leibniz cohomology, $HL^*$, for differentiable manifolds. Then $HL^*$ becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of $HL^* (\{\bf R\}^n; \{\bf R\})$ reduce to those of formal vector fields, and can be identified with certain invariants of foliations.},
author = {Lodder, Jerry M.},
journal = {Annales de l'institut Fourier},
keywords = {Leibniz cohomology; foliations; differentiable manifolds; Gelfand-Fuks cohomology; Leibniz algebras; continuous Leibniz cohomology},
language = {eng},
number = {1},
pages = {73-95},
publisher = {Association des Annales de l'Institut Fourier},
title = {Leibniz cohomology for differentiable manifolds},
url = {http://eudml.org/doc/75282},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Lodder, Jerry M.
TI - Leibniz cohomology for differentiable manifolds
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 73
EP - 95
AB - We propose a definition of Leibniz cohomology, $HL^*$, for differentiable manifolds. Then $HL^*$ becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of $HL^* ({\bf R}^n; {\bf R})$ reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
LA - eng
KW - Leibniz cohomology; foliations; differentiable manifolds; Gelfand-Fuks cohomology; Leibniz algebras; continuous Leibniz cohomology
UR - http://eudml.org/doc/75282
ER -
References
top- [B] R. BOTT, Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics, 279 (1972), 1-94. Zbl0241.57010MR50 #14777
- [BS] R. BOTT, G. SEGAL, The Cohomology of the Vector Fields on a Manifold, Topology, 16 (1977), 285-298. Zbl0387.57012MR58 #31102
- [CE] C. CHEVALLEY, S. EILENBERG, Cohomology Theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124. Zbl0031.24803MR9,567a
- [C] A. CONNES, Géométrie Non Commutative, Inter Editions, Paris, 1990. Zbl0745.46067
- [F] D.B. FUKS, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, 1986 (A.B. Sosinskii translator). Zbl0667.17005MR88b:17001
- [GK] V. GINZBURG, M.M. KAPRANOV, Koszul Duality for Operads, Duke Jour. Math., 76-1 (1994), 203-272. Zbl0855.18006MR96a:18004
- [Gb] C. GODBILLON, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 421 (1972). Zbl0296.17010
- [Gw] T.G. GOODWILLIE, Relative Algebraic K-Theory and Cyclic Homology, Annals of Math., 124 (1986), 347-402. Zbl0627.18004MR88b:18008
- [H] A. HAEFLIGER, Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 412 (1972). Zbl0257.57011
- [HS] G. HOCHSCHILDJ.-P. SERRE, Cohomology of Lie Algebras, Ann. of Math., 57 (1953), 591-603. Zbl0053.01402MR14,943c
- [K] V. KAČ, Vertex Algebras for Beginners, Am. Math. Soc., Univ. Lecture Series, 10 (1996). Zbl0861.17017
- [K-S] Y. KOSMANN-SCHWARZBACH, From Poisson Algebras to Gerstenhaber Algebra, Ann. Inst. Fourier, Grenoble, 46-5 (1996), 1243-1274. Zbl0858.17027MR98b:17032
- [L1] J.-L. LODAY, Cyclic Homology, Grund. Math. Wissen. 301, Springer Verlag, 1992. Zbl0780.18009MR94a:19004
- [L2] J.-L. LODAY, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. Zbl0806.55009MR95a:19004
- [L3] J.-L. LODAY, Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77-2 (1995), 189-196. Zbl0859.17015MR96m:17001
- [L4] J.-L. LODAY, La Renaissance des Opérades, Séminaire Bourbaki, 792 (1994-1995). Zbl0866.18007
- [LP] J.-L. LODAY, T. PIRASHVILI, Universal Enveloping Algebras of Leibniz Algebras and (Co)-homology, Math. Annalen, 296 (1993), 139-158. Zbl0821.17022MR94j:17003
- [P] T. PIRASHVILI, On Leibniz Homology, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 401-411. Zbl0821.17023MR96f:17030
- [S] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Inc. (1979). Zbl0439.53001
- [W] H. WEYL, The Classical Groups, Princeton University Press, 1946. Zbl1024.20502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.