Locally conformally Kähler metrics on Hopf surfaces
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 4, page 1107-1127
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGauduchon, Paul, and Ornea, Liviu. "Locally conformally Kähler metrics on Hopf surfaces." Annales de l'institut Fourier 48.4 (1998): 1107-1127. <http://eudml.org/doc/75311>.
@article{Gauduchon1998,
abstract = {A primary Hopf surface is a compact complex surface with universal cover $\{\Bbb C\}^2-\lbrace (0,0)\rbrace $ and cyclic fundamental group generated by the transformation $(u,v)\mapsto (\alpha u + \lambda v^m, \beta v)$, $m\in \{\Bbb Z\}$, and $\alpha ,~ \beta ,~ \lambda ~\in \{\Bbb C\}$ such that $\mid \alpha \mid \ge \mid \beta \mid >1$ and $(\alpha -\beta ^m)\lambda =0$. Being diffeomorphic with $S^3\times S^1$ Hopf surfaces cannot admit any Kähler metric. However, it was known that for $\lambda =0$ and $\mid \alpha \mid =\mid \beta \mid $ they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class $1$ ($\lambda = 0$). We also show that these metrics are obtained via a Riemannian suspension over $S^1$, by deforming the canonical Sasakian structure of $S^3$ by a Hermitian quadratic form of $\{\Bbb C\}^2$. We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.},
author = {Gauduchon, Paul, Ornea, Liviu},
journal = {Annales de l'institut Fourier},
keywords = {Hopf surface; locally conformal Kähler metric; Sasakian structure; contact form; Killing vector field; deformation},
language = {eng},
number = {4},
pages = {1107-1127},
publisher = {Association des Annales de l'Institut Fourier},
title = {Locally conformally Kähler metrics on Hopf surfaces},
url = {http://eudml.org/doc/75311},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Gauduchon, Paul
AU - Ornea, Liviu
TI - Locally conformally Kähler metrics on Hopf surfaces
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1107
EP - 1127
AB - A primary Hopf surface is a compact complex surface with universal cover ${\Bbb C}^2-\lbrace (0,0)\rbrace $ and cyclic fundamental group generated by the transformation $(u,v)\mapsto (\alpha u + \lambda v^m, \beta v)$, $m\in {\Bbb Z}$, and $\alpha ,~ \beta ,~ \lambda ~\in {\Bbb C}$ such that $\mid \alpha \mid \ge \mid \beta \mid >1$ and $(\alpha -\beta ^m)\lambda =0$. Being diffeomorphic with $S^3\times S^1$ Hopf surfaces cannot admit any Kähler metric. However, it was known that for $\lambda =0$ and $\mid \alpha \mid =\mid \beta \mid $ they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class $1$ ($\lambda = 0$). We also show that these metrics are obtained via a Riemannian suspension over $S^1$, by deforming the canonical Sasakian structure of $S^3$ by a Hermitian quadratic form of ${\Bbb C}^2$. We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.
LA - eng
KW - Hopf surface; locally conformal Kähler metric; Sasakian structure; contact form; Killing vector field; deformation
UR - http://eudml.org/doc/75311
ER -
References
top- [1] V. APOSTOLOV, P. GAUDUCHON, The Riemannian Goldberg-Sachs Theorem, Int. J. Math., 8 (1997), 421-439. Zbl0891.53054MR98g:53080
- [2] W. BARTH, C. PETERS, A. VAN DE VEN, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band, 4, Springer-Verlag, 1984. Zbl0718.14023
- [3] F. BELGUN, Complex surfaces admitting no metric with parallel Lee form, preprint.
- [4] D.E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976. Zbl0319.53026MR57 #7444
- [5] L.C. De ANDRES, L.A. CORDERO, M. FERNANDEZ, J.J. MENCIA, Examples of four dimensional locally conformal Kähler manifolds, Geometriae Dedicata, 29 (1989), 227-233. Zbl0676.53073MR90b:53041
- [6] L.A. CORDERO, M. FERNANDEZ, M. De LEON, Compact locally conformal Kähler nilmanifolds, Geometriae Dedicata, 21 (1986), 187-192. Zbl0601.53035MR87j:53097
- [7] S. DRAGOMIR, L. ORNEA, Locally conformal Kähler geometry, Progress in Math., 155, Birkhäuser (1998). Zbl0887.53001MR99a:53081
- [8] P. GAUDUCHON, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. Zbl0523.53059MR87a:53101
- [9] P. GAUDUCHON, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. Reine Angew. Math., 469 (1995), 1-50. Zbl0858.53039MR97d:53048
- [10] Géométrie des surfaces K3: modules et périodes. Séminaire Palaiseau, octobre 1981-janvier 1982, Astérisque, 126 (1985). Zbl0547.00019
- [11] R. HARVEY, H. BLAINE LAWSON, Jr, An intrinsic characterisation of Kähler manifolds, Inv. Math., 74 (1983), 139-150. Zbl0553.32008
- [12] S. KOBAYASHI, K. NOMIZU, Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963. Zbl0119.37502MR27 #2945
- [13] K. KODAIRA, On the structure of compact complex analytic surfaces, II, American J. Math., 88 (1966), 682-722. Zbl0193.37701MR34 #5112
- [14] K. KODAIRA, Complex structures on S1 ȕ S3, Proc. Nat. Acad. Sci. USA, 55 (1966), 240-243. Zbl0141.27402MR33 #4955
- [15] K. KODAIRA, D.C. SPENCER, On deformations of complex analytic structures, III, stability theorems for complex structures, Ann. of Math., 71 (1960), 43-77. Zbl0128.16902MR22 #5991
- [16] B. KOSTANT, Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), 528-542. Zbl0066.16001MR18,930a
- [17] C. LEBRUN, Private letter to the first named author, September 22, 1992.
- [18] H.C. LEE, A kind of even dimensional differential geometry and its application to exterior calculus, American J. Math., 65 (1943), 433-438. Zbl0060.38302MR5,15h
- [19] P. PICCINNI, Attempts of writing metrics on primary Hopf surfaces, private communication, October 1991.
- [20] Y.-T. SIU, Every K3 surface is Kähler, Inv. Math., 73 (1983), 139-150. Zbl0557.32004MR84j:32036
- [21] S. TANNO, The standard CR structure on the unit tangent bundle, Tohoku Math. J., 44 (1992), 535-543. Zbl0779.53024MR93k:53033
- [22] F. TRICERRI, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politecn. Torino, 40 (1982), 81-92. Zbl0511.53068MR84j:53073
- [23] I. VAISMAN, Some curvature properties of Locally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 259 (1980), 439-447. Zbl0435.53044MR81d:53044
- [24] I. VAISMAN, On locally and Globally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. Zbl0446.53048MR81j:53064
- [25] I. VAISMAN, Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), 231-255. Zbl0506.53032MR84g:53096
- [26] I. VAISMAN, Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politecn. Torino, Vol. 45, 3 (1987), 117-123. Zbl0696.53039MR91a:32039
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.