Locally conformally Kähler metrics on Hopf surfaces

Paul Gauduchon; Liviu Ornea

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 4, page 1107-1127
  • ISSN: 0373-0956

Abstract

top
A primary Hopf surface is a compact complex surface with universal cover 2 - { ( 0 , 0 ) } and cyclic fundamental group generated by the transformation ( u , v ) ( α u + λ v m , β v ) , m , and α , β , λ such that α β > 1 and ( α - β m ) λ = 0 . Being diffeomorphic with S 3 × S 1 Hopf surfaces cannot admit any Kähler metric. However, it was known that for λ = 0 and α = β they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class 1 ( λ = 0 ). We also show that these metrics are obtained via a Riemannian suspension over S 1 , by deforming the canonical Sasakian structure of S 3 by a Hermitian quadratic form of 2 . We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.

How to cite

top

Gauduchon, Paul, and Ornea, Liviu. "Locally conformally Kähler metrics on Hopf surfaces." Annales de l'institut Fourier 48.4 (1998): 1107-1127. <http://eudml.org/doc/75311>.

@article{Gauduchon1998,
abstract = {A primary Hopf surface is a compact complex surface with universal cover $\{\Bbb C\}^2-\lbrace (0,0)\rbrace $ and cyclic fundamental group generated by the transformation $(u,v)\mapsto (\alpha u + \lambda v^m, \beta v)$, $m\in \{\Bbb Z\}$, and $\alpha ,~ \beta ,~ \lambda ~\in \{\Bbb C\}$ such that $\mid \alpha \mid \ge \mid \beta \mid &gt;1$ and $(\alpha -\beta ^m)\lambda =0$. Being diffeomorphic with $S^3\times S^1$ Hopf surfaces cannot admit any Kähler metric. However, it was known that for $\lambda =0$ and $\mid \alpha \mid =\mid \beta \mid $ they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class $1$ ($\lambda = 0$). We also show that these metrics are obtained via a Riemannian suspension over $S^1$, by deforming the canonical Sasakian structure of $S^3$ by a Hermitian quadratic form of $\{\Bbb C\}^2$. We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.},
author = {Gauduchon, Paul, Ornea, Liviu},
journal = {Annales de l'institut Fourier},
keywords = {Hopf surface; locally conformal Kähler metric; Sasakian structure; contact form; Killing vector field; deformation},
language = {eng},
number = {4},
pages = {1107-1127},
publisher = {Association des Annales de l'Institut Fourier},
title = {Locally conformally Kähler metrics on Hopf surfaces},
url = {http://eudml.org/doc/75311},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Gauduchon, Paul
AU - Ornea, Liviu
TI - Locally conformally Kähler metrics on Hopf surfaces
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1107
EP - 1127
AB - A primary Hopf surface is a compact complex surface with universal cover ${\Bbb C}^2-\lbrace (0,0)\rbrace $ and cyclic fundamental group generated by the transformation $(u,v)\mapsto (\alpha u + \lambda v^m, \beta v)$, $m\in {\Bbb Z}$, and $\alpha ,~ \beta ,~ \lambda ~\in {\Bbb C}$ such that $\mid \alpha \mid \ge \mid \beta \mid &gt;1$ and $(\alpha -\beta ^m)\lambda =0$. Being diffeomorphic with $S^3\times S^1$ Hopf surfaces cannot admit any Kähler metric. However, it was known that for $\lambda =0$ and $\mid \alpha \mid =\mid \beta \mid $ they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class $1$ ($\lambda = 0$). We also show that these metrics are obtained via a Riemannian suspension over $S^1$, by deforming the canonical Sasakian structure of $S^3$ by a Hermitian quadratic form of ${\Bbb C}^2$. We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.
LA - eng
KW - Hopf surface; locally conformal Kähler metric; Sasakian structure; contact form; Killing vector field; deformation
UR - http://eudml.org/doc/75311
ER -

References

top
  1. [1] V. APOSTOLOV, P. GAUDUCHON, The Riemannian Goldberg-Sachs Theorem, Int. J. Math., 8 (1997), 421-439. Zbl0891.53054MR98g:53080
  2. [2] W. BARTH, C. PETERS, A. VAN DE VEN, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band, 4, Springer-Verlag, 1984. Zbl0718.14023
  3. [3] F. BELGUN, Complex surfaces admitting no metric with parallel Lee form, preprint. 
  4. [4] D.E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976. Zbl0319.53026MR57 #7444
  5. [5] L.C. De ANDRES, L.A. CORDERO, M. FERNANDEZ, J.J. MENCIA, Examples of four dimensional locally conformal Kähler manifolds, Geometriae Dedicata, 29 (1989), 227-233. Zbl0676.53073MR90b:53041
  6. [6] L.A. CORDERO, M. FERNANDEZ, M. De LEON, Compact locally conformal Kähler nilmanifolds, Geometriae Dedicata, 21 (1986), 187-192. Zbl0601.53035MR87j:53097
  7. [7] S. DRAGOMIR, L. ORNEA, Locally conformal Kähler geometry, Progress in Math., 155, Birkhäuser (1998). Zbl0887.53001MR99a:53081
  8. [8] P. GAUDUCHON, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. Zbl0523.53059MR87a:53101
  9. [9] P. GAUDUCHON, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. Reine Angew. Math., 469 (1995), 1-50. Zbl0858.53039MR97d:53048
  10. [10] Géométrie des surfaces K3: modules et périodes. Séminaire Palaiseau, octobre 1981-janvier 1982, Astérisque, 126 (1985). Zbl0547.00019
  11. [11] R. HARVEY, H. BLAINE LAWSON, Jr, An intrinsic characterisation of Kähler manifolds, Inv. Math., 74 (1983), 139-150. Zbl0553.32008
  12. [12] S. KOBAYASHI, K. NOMIZU, Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963. Zbl0119.37502MR27 #2945
  13. [13] K. KODAIRA, On the structure of compact complex analytic surfaces, II, American J. Math., 88 (1966), 682-722. Zbl0193.37701MR34 #5112
  14. [14] K. KODAIRA, Complex structures on S1 ȕ S3, Proc. Nat. Acad. Sci. USA, 55 (1966), 240-243. Zbl0141.27402MR33 #4955
  15. [15] K. KODAIRA, D.C. SPENCER, On deformations of complex analytic structures, III, stability theorems for complex structures, Ann. of Math., 71 (1960), 43-77. Zbl0128.16902MR22 #5991
  16. [16] B. KOSTANT, Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), 528-542. Zbl0066.16001MR18,930a
  17. [17] C. LEBRUN, Private letter to the first named author, September 22, 1992. 
  18. [18] H.C. LEE, A kind of even dimensional differential geometry and its application to exterior calculus, American J. Math., 65 (1943), 433-438. Zbl0060.38302MR5,15h
  19. [19] P. PICCINNI, Attempts of writing metrics on primary Hopf surfaces, private communication, October 1991. 
  20. [20] Y.-T. SIU, Every K3 surface is Kähler, Inv. Math., 73 (1983), 139-150. Zbl0557.32004MR84j:32036
  21. [21] S. TANNO, The standard CR structure on the unit tangent bundle, Tohoku Math. J., 44 (1992), 535-543. Zbl0779.53024MR93k:53033
  22. [22] F. TRICERRI, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politecn. Torino, 40 (1982), 81-92. Zbl0511.53068MR84j:53073
  23. [23] I. VAISMAN, Some curvature properties of Locally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 259 (1980), 439-447. Zbl0435.53044MR81d:53044
  24. [24] I. VAISMAN, On locally and Globally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. Zbl0446.53048MR81j:53064
  25. [25] I. VAISMAN, Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), 231-255. Zbl0506.53032MR84g:53096
  26. [26] I. VAISMAN, Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politecn. Torino, Vol. 45, 3 (1987), 117-123. Zbl0696.53039MR91a:32039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.