Compact lcK manifolds with parallel vector fields
Complex Manifolds (2015)
- Volume: 2, Issue: 1, page 26-33, electronic only
- ISSN: 2300-7443
Access Full Article
topAbstract
topHow to cite
topAndrei Moroianu. "Compact lcK manifolds with parallel vector fields." Complex Manifolds 2.1 (2015): 26-33, electronic only. <http://eudml.org/doc/275837>.
@article{AndreiMoroianu2015,
abstract = {We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.},
author = {Andrei Moroianu},
journal = {Complex Manifolds},
keywords = {Vaisman manifolds; lcK manifolds; parallel vector fields; locally conformally Kähler manifolds},
language = {eng},
number = {1},
pages = {26-33, electronic only},
title = {Compact lcK manifolds with parallel vector fields},
url = {http://eudml.org/doc/275837},
volume = {2},
year = {2015},
}
TY - JOUR
AU - Andrei Moroianu
TI - Compact lcK manifolds with parallel vector fields
JO - Complex Manifolds
PY - 2015
VL - 2
IS - 1
SP - 26
EP - 33, electronic only
AB - We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.
LA - eng
KW - Vaisman manifolds; lcK manifolds; parallel vector fields; locally conformally Kähler manifolds
UR - http://eudml.org/doc/275837
ER -
References
top- [1] F. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1–40. Zbl0988.32017
- [2] N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier 49 no. 1 (1999), 287–302. [Crossref] Zbl0926.32025
- [3] S. Dragomir, L. Ornea, Locally conformal Kähler geometry, Progress in Math. 155, Birkhäuser, Boston, Basel, 1998. Zbl0887.53001
- [4] P. Gauduchon, A. Moroianu, L. Ornea, Compact homogeneous lcK manifolds are Vaisman, Math. Ann. 361 (3-4), (2015), 1043– 1048. [WoS] Zbl1319.53081
- [5] P. Gauduchon, L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier 48 no. 4 (1998), 1107–1127. [Crossref] Zbl0917.53025
- [6] A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier 49 no. 1 (1999), 263–285. [Crossref] Zbl0926.32026
- [7] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett., 10 (2003), 799–805. Zbl1052.53051
- [8] I. Vaisman, A survey of generalizedHopf manifolds, Rend. Sem.Mat. Univ. Politec. Torino 1983, Special Issue (1984), 205–221.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.