Effective nonvanishing, effective global generation

Mark Andrea A. De Cataldo

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 5, page 1359-1378
  • ISSN: 0373-0956

Abstract

top
We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.

How to cite

top

De Cataldo, Mark Andrea A.. "Effective nonvanishing, effective global generation." Annales de l'institut Fourier 48.5 (1998): 1359-1378. <http://eudml.org/doc/75322>.

@article{DeCataldo1998,
abstract = {We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.},
author = {De Cataldo, Mark Andrea A.},
journal = {Annales de l'institut Fourier},
keywords = {algebraic fundamental group; local Seshadri constant; maps to Grassmannians; nef vector bundles; effective global generation; jets; effective nonvanishing},
language = {eng},
number = {5},
pages = {1359-1378},
publisher = {Association des Annales de l'Institut Fourier},
title = {Effective nonvanishing, effective global generation},
url = {http://eudml.org/doc/75322},
volume = {48},
year = {1998},
}

TY - JOUR
AU - De Cataldo, Mark Andrea A.
TI - Effective nonvanishing, effective global generation
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 5
SP - 1359
EP - 1378
AB - We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.
LA - eng
KW - algebraic fundamental group; local Seshadri constant; maps to Grassmannians; nef vector bundles; effective global generation; jets; effective nonvanishing
UR - http://eudml.org/doc/75322
ER -

References

top
  1. [1] U. ANGEHRN, Y.-T. SIU, Effective freeness and point separation for adjoint bundles, Invent. Math., 122 (1995), 291-308. Zbl0847.32035MR97b:32036
  2. [2] M.A. de CATALDO, Singular hermitian metrics on vector bundles, to appear in Jour. für die reine und angew. Math., 502 (1998). Zbl0902.32012MR2000c:32067
  3. [3] J.-P. DEMAILLY, L2 Vanishing Theorems for Positive Line Bundles and Adjunction Theory, in Transcendental Methods in Algebraic Geometry, CIME, Cetraro, (1994), LNM 1646, Springer, 1996. Zbl0883.14005
  4. [4] J.-P. DEMAILLY, T. PETERNELL, M. SCHNEIDER, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., 3 (1994), 295-345. Zbl0827.14027MR95f:32037
  5. [5] L. EIN, O. KÜCHLE, R. LAZARSFELD, Local positivity of ample line bundles, Jour. of Diff. Geo., 42 (1995), 193-219. Zbl0866.14004MR96m:14007
  6. [6] L. EIN, Multiplier Ideals, Vanishing Theorem and Applications, to appear in Proc. A.M.S. Meeting, Santa Cruz, 1995. 
  7. [7] H. ESNAULT, E. VIEHWEG, Lectures on Vanishing Theorems, DMV Seminar, Band 20, Birkhäuser Verlag, 1992. Zbl0779.14003
  8. [8] A. GROTHENDIECK, Éléments de géométrie algébrique, with J. Dieudonné, Publ. Math. de l'I.H.E.S., 17, 1963. Zbl0122.16102
  9. [9] Y. KAWAMATA, K. MATSUDA, K. MATSUKI, Introduction to the minimal model problem, Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math., Vol 10, T. Oda (Ed.), North Holland, Amsterdam, 1987, 283-360. Zbl0672.14006MR89e:14015
  10. [10] J. KOLLÁR, Effective base point freeness, Math. Ann., 296 (1993), 595-605. Zbl0818.14002MR94f:14004
  11. [11] J. KOLLÁR, Shafarevich maps and plurigenera of algebraic varieties, Inv. Math., 113 (1993), 177-215. Zbl0819.14006MR94m:14018
  12. [12] J. KOLLÁR, Shafarevich maps and automorphic forms, Princeton University Press, 1995. Zbl0871.14015MR96i:14016
  13. [13] J. KOLLÁR, Singularities of pairs, to appear in Proc. A.M.S. Meeting, Santa Cruz, 1995. Zbl0905.14002
  14. [14] H.-G. RACKWITZ, Birational geometry of complete intersections, Abh. Math. Sem. Univ. Hamburg, 66 (1996), 263-271. Zbl0907.14023MR97g:14016
  15. [15] Y.-T. SIU, Very ampleness criterion of double adjoints of line bundles, in Annals of Math. Studies, Vol. 137, Princeton Univ. Press, N.J., 1995. Zbl0853.32035MR98f:32032
  16. [16] H. TSUJI, Global generation of adjoint bundles, Nagoya Math. J., Vol 142 (1996), 5-16. Zbl0861.32018MR97g:14004

NotesEmbed ?

top

You must be logged in to post comments.