Trajectories of polynomial vector fields and ascending chains of polynomial ideals

Dmitri Novikov; Sergei Yakovenko

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 2, page 563-609
  • ISSN: 0373-0956

Abstract

top
We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in n and an algebraic hypersurface. The answer is polynomial in the height (the magnitude of coefficients) of the equation and the size of the curve in the space-time, with the exponent depending only on the degree and the dimension.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned by consecutive derivatives.

How to cite

top

Novikov, Dmitri, and Yakovenko, Sergei. "Trajectories of polynomial vector fields and ascending chains of polynomial ideals." Annales de l'institut Fourier 49.2 (1999): 563-609. <http://eudml.org/doc/75347>.

@article{Novikov1999,
abstract = {We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in $\{\Bbb R\}^n$ and an algebraic hypersurface. The answer is polynomial in the height (the magnitude of coefficients) of the equation and the size of the curve in the space-time, with the exponent depending only on the degree and the dimension.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned by consecutive derivatives.},
author = {Novikov, Dmitri, Yakovenko, Sergei},
journal = {Annales de l'institut Fourier},
keywords = {chains of polynomial ideals; intersections; integral curves; polynomial vector field},
language = {eng},
number = {2},
pages = {563-609},
publisher = {Association des Annales de l'Institut Fourier},
title = {Trajectories of polynomial vector fields and ascending chains of polynomial ideals},
url = {http://eudml.org/doc/75347},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Novikov, Dmitri
AU - Yakovenko, Sergei
TI - Trajectories of polynomial vector fields and ascending chains of polynomial ideals
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 563
EP - 609
AB - We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in ${\Bbb R}^n$ and an algebraic hypersurface. The answer is polynomial in the height (the magnitude of coefficients) of the equation and the size of the curve in the space-time, with the exponent depending only on the degree and the dimension.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned by consecutive derivatives.
LA - eng
KW - chains of polynomial ideals; intersections; integral curves; polynomial vector field
UR - http://eudml.org/doc/75347
ER -

References

top
  1. [1] V. I. ARNOL´D, S. M. GUSEǏN-ZADE, A. N. Varchenko, Singularities of differentiable maps, Vol. I (The classification of critical points, caustics and wave fronts). Monographs in Mathematics, 82. Birkhäuser, Boston, Mass., 1985. Zbl0554.58001
  2. [2] Miriam BRISKIN, Y. YOMDIN, Algebraic families of analytic functions (I), J. Differential Equations 136, no. 2 (1997), 248-267. Zbl0886.34005MR98h:34009b
  3. [3] P. ENFLO, V. GURARII, V. LOMONOSOV, Yu. LYUBICH, Exponential numbers of operators in normed spaces, Linear Algebra Appl., 219 (1995), 225-260. Zbl0836.47016MR96c:47026
  4. [4] A. GABRIÈLOV, Multiplicities of zeros of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Math. Research Letters, 2 (1996), 437-451. Zbl0845.32003MR97c:14055
  5. [5] A. GABRIÈLOV, Multiplicity of a zero of an analytic function on a trajectory of a vector field, Preprint, Purdue University, 1997, 7 pp. Zbl0948.32010
  6. [6] A. GABRIÈLOV, J.-M. LION, R. MOUSSU, Ordre de contact de courbes intégrales du plan, C. R. Acad. Sci. Paris, Sér. I Math., 319, no. 3 (1994), 219-221. Zbl0836.14014MR95g:32058
  7. [7] L. GAVRILOV, Petrov modules and zeros of Abelian integrals. Preprint no. 95, Université Paul Sabatier (1997), to appear in Bull. Sci. Mathématiques. Zbl0964.32022
  8. [8] Patrizia GIANNI, B. TRAGER, G. ZACHARIAS, Gröbner bases and primary decomposition of polynomial ideals. Computational aspects of commutative algebra, J. Symbolic Comput., 6, no. 2-3 (1988), 149-167. Zbl0667.13008
  9. [9] M. GIUSTI, Some effectivity problems in polynomial ideal theory. EUROSAM 84 (Cambridge, 1984), 159-171, Lecture Notes in Comput. Sci., 174, Springer, Berlin-New York, 1984. Zbl0585.13010MR86d:12001
  10. [10] A. GIVENTAL, Sturm's theorem for hyperelliptic integrals, Algebra i Analiz 1 (1989), no. 5, 95-102; translation in Leningrad Math. J., 1, no. 5 (1990), 1157-1163. Zbl0724.58026MR91c:58038
  11. [11] J. HEINTZ, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci., 24, no. 3 (1983), 239-277. Zbl0546.03017MR85a:68062
  12. [12] Greta HERMANN, Die Frage der endlich vielen Schritte in der Theorie der Polynomialideale, Mathematische Annalen, 95 (1926), 736-788. Zbl52.0127.01JFM52.0127.01
  13. [13] W. V. D. HODGE, D. PEDOE, Methods of algebraic geometry. Vol. I. Reprint of the 1947 original. Cambridge University Press, Cambridge, 1994. Zbl0796.14003MR95d:14002a
  14. [14] Yu. IL´YASHENKO, S. YAKOVENKO, Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Diff. Equations, 126, no. 1 (1996), 87-105. Zbl0847.34010MR97a:34010
  15. [15] W. J. KIM, The Schwarzian derivative and multivalence, Pacific J. of Math., 31, no. 3 (1969), 717-724. Zbl0188.14403MR40 #5849
  16. [16] Teresa KRICK, A. LOGAR, An algorithm for the computation of the radical of an ideal in the ring of polynomials, Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), 195-205, Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991. Zbl0823.13018MR94e:68089
  17. [17] D. LAZARD, A note on upper bounds for ideal-theoretic problems, J. Symbolic Comput., 13, no. 3 (1992), 231-233. Zbl0787.13010MR93b:13020
  18. [18] S. LOJASIEWICZ, Introduction to Complex Analytic Geometry, Birkhäuser, Basel-Boston-Berlin, 1991. Zbl0747.32001MR92g:32002
  19. [19] E. W. MAYR, A. R. MEYER, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. in Math., 46 (1982), 305-329. Zbl0506.03007MR84g:20099
  20. [20] G. MORENO SOCÍAS, Length of polynomial ascending chains and primitive recursiveness, Math. Scand. 71 (1992), no. 2, 181-205; An Ackermannian polynomial ideal, in Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), 269-280, Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991; Autour de la fonction de Hilbert-Samuel (escaliers d'idéaux polynomiaux), Ph. D. Thesis, Centre de Mathématiques de l'École Polytechnique, 1991. Zbl0807.13006MR94d:13019
  21. [21] D. NOVIKOV, S. YAKOVENKO, Integral Frenet curvatures and oscillation of spatial curves around affine subspaces of a Euclidean space, J. of Dynamical and Control Systems, 2, no. 2 (1996), 157-191. Zbl0953.53003MR97b:53062
  22. [22] NOVIKOV, S. YAKOVENKO, Meandering of trajectories of polynomial vector fields in the affine n-space, Publ. Mat., 41, no. 1 (1997), 223-242. Zbl0878.34026MR98f:58160
  23. [23] J.-J. RISLER, A bound for the degree of nonholonomy in the plane, Algorithmic complexity of algebraic and geometric models (Creteil, 1994), Theoret. Comput. Sci., 157, no. 1 (1996), 129-136. Zbl0871.93024MR96m:93065
  24. [24] A. SEIDENBERG, Constructions in algebra, Trans. Amer. Math. Soc., 197 (1974), 273-313. Zbl0356.13007MR50 #2141
  25. [25] A. SEIDENBERG, Constructive proof of Hilbert's theorem on ascending chains, Trans. Amer. Math. Soc. 174 (1972), 305-312; On the length of a Hilbert ascending chain, Proc. Amer. Math. Soc., 29 (1971), 443-450. Zbl0216.32802
  26. [26] Y. YOMDIN, Oscillation of analytic curves, Proc. Amer. Math. Soc., 126, no. 2 (1998), 357-364. Zbl0897.32001MR98d:32033
  27. [27] O. ZARISKI, P. SAMUEL, Commutative Algebra, vol. 1, Springer-Verlag, N. Y. et al., 1975, corrected reprinting of the 1958 edition. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.