Non-oscillating solutions of a differential equation and Hardy fields

François Blais[1]; Robert Moussu[1]; Fernando Sanz[2]

  • [1] Université de Bourgogne IMB UFR Sciences et Tecniques 9 Avenue Alain Savary, BP47870 21004 Dijon cedex (France)
  • [2] Universidad de Valladolid Depto. de Álgebra, Geometría y Topología Facultad de Ciencias E-47005 Valladolid (Spain)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 6, page 1825-1838
  • ISSN: 0373-0956

Abstract

top
Let ϕ : x ϕ ( x ) , x 0 be a solution of an algebraic differential equation of order n , P ( x , y , y , ... , y ( n ) ) = 0 . We establish a geometric criterion so that the germs at infinity of ϕ and the identity function on belong to a common Hardy field. This criterion is based on the concept of non oscillation.

How to cite

top

Blais, François, Moussu, Robert, and Sanz, Fernando. "Solutions non oscillantes d’une équation différentielle et corps de Hardy." Annales de l’institut Fourier 57.6 (2007): 1825-1838. <http://eudml.org/doc/10278>.

@article{Blais2007,
abstract = {Soit $\varphi :x\mapsto \varphi (x), x\gg 0$ une solution à l’infini d’une équation différentielle algébrique d’ordre $n$, $P(x,y,y^\{\prime\},\ldots ,y^\{(n)\})=0$. Nous donnons un critère géométrique pour que les germes à l’infini de $\varphi $ et de la fonction identité sur $\{\mathbb\{R\}\}$ appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.},
affiliation = {Université de Bourgogne IMB UFR Sciences et Tecniques 9 Avenue Alain Savary, BP47870 21004 Dijon cedex (France); Université de Bourgogne IMB UFR Sciences et Tecniques 9 Avenue Alain Savary, BP47870 21004 Dijon cedex (France); Universidad de Valladolid Depto. de Álgebra, Geometría y Topología Facultad de Ciencias E-47005 Valladolid (Spain)},
author = {Blais, François, Moussu, Robert, Sanz, Fernando},
journal = {Annales de l’institut Fourier},
keywords = {oscillation; Hardy field; semi-algebraic; pfaffian},
language = {fre},
number = {6},
pages = {1825-1838},
publisher = {Association des Annales de l’institut Fourier},
title = {Solutions non oscillantes d’une équation différentielle et corps de Hardy},
url = {http://eudml.org/doc/10278},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Blais, François
AU - Moussu, Robert
AU - Sanz, Fernando
TI - Solutions non oscillantes d’une équation différentielle et corps de Hardy
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1825
EP - 1838
AB - Soit $\varphi :x\mapsto \varphi (x), x\gg 0$ une solution à l’infini d’une équation différentielle algébrique d’ordre $n$, $P(x,y,y^{\prime},\ldots ,y^{(n)})=0$. Nous donnons un critère géométrique pour que les germes à l’infini de $\varphi $ et de la fonction identité sur ${\mathbb{R}}$ appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.
LA - fre
KW - oscillation; Hardy field; semi-algebraic; pfaffian
UR - http://eudml.org/doc/10278
ER -

References

top
  1. V. Arnolʼd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1984), “Mir”, Moscow Zbl0956.34502
  2. Riccardo Benedetti, Jean-Jacques Risler, Real algebraic and semi-algebraic sets, (1990), Hermann, Paris Zbl0694.14006MR1070358
  3. J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, 12 (1987), Springer-Verlag, Berlin Zbl0633.14016MR949442
  4. Michael Boshernitzan, An extension of Hardy’s class L of “orders of infinity”, J. Analyse Math. 39 (1981), 235-255 Zbl0539.26002
  5. Michael Boshernitzan, Second order differential equations over Hardy fields, J. London Math. Soc. (2) 35 (1987), 109-120 Zbl0616.26002MR871769
  6. F. Cano, R. Moussu, F. Sanz, Oscillation, spiralement, tourbillonnement, Comment. Math. Helv. 75 (2000), 284-318 Zbl0971.58025MR1774707
  7. F. Cano, R. Moussu, F. Sanz, Nonoscillating projections for trajectories of vector fields, Journal of Dynamical and Control Systems 13 (2007), 173-176 Zbl1130.34313MR2317453
  8. Lou van den Dries, Tame topology and o-minimal structures, 248 (1998), Cambridge University Press, Cambridge Zbl0953.03045MR1633348
  9. D. Yu. Grigorʼev, M. F. Singer, Solving ordinary differential equations in terms of series with real exponents, Trans. Amer. Math. Soc. 327 (1991), 329-351 Zbl0758.12004MR1012519
  10. G. H. Hardy, Properties of logarithmico-exponential functions, Proc. London Math. Soc., 10 (1912), 54-90 Zbl42.0437.02
  11. G. H. Hardy, Some results concerning the behaviour at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proc. London Math. Soc., 10 (1912), 451-469 Zbl43.0390.02
  12. A. G. Khovanskiĭ, Fewnomials, 88 (1991), American Mathematical Society, Providence, RI Zbl0728.12002MR1108621
  13. Jean-Marie Lion, Chris Miller, Patrick Speissegger, Differential equations over polynomially bounded o-minimal structures, Proc. Amer. Math. Soc. 131 (2003), 175-183 (electronic) Zbl1007.03039MR1929037
  14. R. Moussu, C. Roche, Théorie de Hovanskiĭ et problème de Dulac, Invent. Math. 105 (1991), 431-441 Zbl0769.58050MR1115550
  15. D. Novikov, S. Yakovenko, Trajectories of polynomial vector fields and ascending chains of polynomial ideals, Ann. Inst. Fourier (Grenoble) 49 (1999), 563-609 Zbl0947.37008MR1697373
  16. O. Perron, Über Differentialgliechungen erster Ordnung, die nicht nach der Ableitung aufgelöst sind, Jahresbericht der Deutschen Mathematiker-Vereinigung 22 (1912), 356-368 Zbl44.0387.01
  17. Maxwell Rosenlicht, Hardy fields, J. Math. Anal. Appl. 93 (1983), 297-311 Zbl0518.12014MR700146
  18. Maxwell Rosenlicht, Growth properties of functions in Hardy fields, Trans. Amer. Math. Soc. 299 (1987), 261-272 Zbl0619.34057MR869411
  19. Maxwell Rosenlicht, Asymptotic solutions of Y = F ( x ) Y , J. Math. Anal. Appl. 189 (1995), 640-650 Zbl0824.34068MR1312544
  20. John Shackell, Erratum : “Growth orders occurring in expansions of Hardy-field solutions of algebraic differential equations” [Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 183–221 ; MR1324130 (96f :34073)], Ann. Inst. Fourier (Grenoble) 45 (1995) Zbl0816.34040
  21. Georges Valiron, Équations Fonctionnelles. Applications, (1945), Masson et Cie, Paris Zbl0061.16607MR14520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.