Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields

Lubomir Gavrilov

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 2, page 611-652
  • ISSN: 0373-0956

Abstract

top
Let 𝒜 be the real vector space of Abelian integrals I ( h ) = { H h } R ( x , y ) d x d y , h [ 0 , h ˜ ] where H ( x , y ) = ( x 2 + y 2 ) / 2 + ... is a fixed real polynomial, R ( x , y ) is an arbitrary real polynomial and { H h } , h [ 0 , h ˜ ] , is the interior of the oval of H which surrounds the origin and tends to it as h 0 . We prove that if H ( x , y ) is a semiweighted homogeneous polynomial with only Morse critical points, then 𝒜 is a free finitely generated module over the ring of real polynomials [ h ] , and compute its rank. We find the generators of 𝒜 in the case when H is an arbitrary cubic polynomial. Finally we apply this in the study of degree n polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is n - 1 .

How to cite

top

Gavrilov, Lubomir. "Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields." Annales de l'institut Fourier 49.2 (1999): 611-652. <http://eudml.org/doc/75348>.

@article{Gavrilov1999,
abstract = {Let $\{\cal A\}$ be the real vector space of Abelian integrals\begin\{\}I(h)=\int \int \_\{\lbrace H\le h\rbrace \} R(x,y) dx\wedge dy,\;h\in [0,\tilde\{h\}]\end\{\}where $H(x,y)=(x^2+y^2)/2+\ldots $ is a fixed real polynomial, $R(x,y)$ is an arbitrary real polynomial and $\lbrace H\le h\rbrace $, $h\in [0,\tilde\{h\}]$, is the interior of the oval of $H$ which surrounds the origin and tends to it as $h\rightarrow 0$. We prove that if $H(x,y)$ is a semiweighted homogeneous polynomial with only Morse critical points, then $\{\cal A\}$ is a free finitely generated module over the ring of real polynomials $\{\Bbb R\}[h]$, and compute its rank. We find the generators of $\{\cal A\}$ in the case when $H$ is an arbitrary cubic polynomial. Finally we apply this in the study of degree $n$ polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is $n-1$.},
author = {Gavrilov, Lubomir},
journal = {Annales de l'institut Fourier},
keywords = {abelian integrals; limit cycles; Morse critical points; generators of ; Hamiltonian vector fields},
language = {eng},
number = {2},
pages = {611-652},
publisher = {Association des Annales de l'Institut Fourier},
title = {Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields},
url = {http://eudml.org/doc/75348},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Gavrilov, Lubomir
TI - Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 611
EP - 652
AB - Let ${\cal A}$ be the real vector space of Abelian integrals\begin{}I(h)=\int \int _{\lbrace H\le h\rbrace } R(x,y) dx\wedge dy,\;h\in [0,\tilde{h}]\end{}where $H(x,y)=(x^2+y^2)/2+\ldots $ is a fixed real polynomial, $R(x,y)$ is an arbitrary real polynomial and $\lbrace H\le h\rbrace $, $h\in [0,\tilde{h}]$, is the interior of the oval of $H$ which surrounds the origin and tends to it as $h\rightarrow 0$. We prove that if $H(x,y)$ is a semiweighted homogeneous polynomial with only Morse critical points, then ${\cal A}$ is a free finitely generated module over the ring of real polynomials ${\Bbb R}[h]$, and compute its rank. We find the generators of ${\cal A}$ in the case when $H$ is an arbitrary cubic polynomial. Finally we apply this in the study of degree $n$ polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is $n-1$.
LA - eng
KW - abelian integrals; limit cycles; Morse critical points; generators of ; Hamiltonian vector fields
UR - http://eudml.org/doc/75348
ER -

References

top
  1. [1] N. A'CAMPO, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, I, Math. Ann., 213 (1975), 1-32. Zbl0316.14011MR51 #13282
  2. [2] V.I. ARNOLD, S.M. GUSEIN-ZADE, A.N. VARCHENKO, Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics, Birkhäuser, Boston, 1985 and 1988. 
  3. [3] V.I. ARNOLD, Yu. S. IL'YASHENKO, Ordinary Differential Equations, in ‘Dynamical Systems, I', Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988. Zbl0718.34070
  4. [4] V.I. ARNOLD, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988. 
  5. [5] E. BRIESKORN, Die Monodromie der isolierten Singularitäten von Hyperfläschen, Manuscripta Math., 2 (1970), 103-161. Zbl0186.26101MR42 #2509
  6. [6] L. GAVRILOV, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity, 10 (1997), 433-448. Zbl0949.34077MR98b:58143
  7. [7] L. GAVRILOV, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math., 122 (1998), 571-584. Zbl0964.32022MR99m:32043
  8. [8] L. GAVRILOV, Nonoscillation of elliptic integrals related to cubic polynomials of order three, Bull. London Math. Soc., 30 (1998), 267-273. Zbl0959.37039MR99a:34077
  9. [9] L. GAVRILOV, Modules of Abelian integrals, Proc. of the IVth Catalan days of applied mathematics, p. 35-45, Tarragona, Spain, 1998. Zbl0911.32047MR99e:32064
  10. [10] L. GAVRILOV, E. HOROZOV, Limit cycles of perturbations of quadratic vector fields, J. Math. Pures Appl., 72 (1993), 213-238. Zbl0829.58034MR94d:58121
  11. [11] P.A. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
  12. [12] E. HOROZOV, I. ILIEV, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 11 (1998), 1521-1537. Zbl0921.58044MR99j:34036
  13. [13] E. HOROZOV, I.D. ILIEV, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. London Math. Soc., 69 (1994), 198-224. Zbl0802.58046MR95e:58146
  14. [14] S.M. HUSEIN-ZADE, Dynkin digrams of singularities of functions of two variables, Functional Anal. Appl., 8 (1974), 10-13, 295-300. Zbl0309.14006
  15. [15] I.D. ILIEV, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161. Zbl0920.34037MR99a:34082
  16. [16] I.D. ILIEV, Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Diff. Equations, 1 (1996), 689-708. Zbl0851.34042MR97k:34039
  17. [17] Yu. IL'YASHENKO, Dulac's memoir “On Limit Cycles” and related problems of the local theory of differential equations, Russian Math. Surveys, 40 (1985), 1-49. Zbl0668.34032
  18. [18] B. MALGRANGE, Intégrales asymptotiques et monodromie, Ann. scient. Ec. Norm. Sup., 7 (1974), 405-430. Zbl0305.32008MR51 #8459
  19. [19] P. MARDEŠIĆ, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergod. Th. and Dynam. Sys., 10 (1990), 523-529. Zbl0691.58031MR92b:58191
  20. [20] P. MARDEŠIĆ, Chebishev systems and the versal unfolding of the cusp of order n, Hermann, collection Travaux en Cours, 1998. Zbl0904.58044
  21. [21] W.D. NEUMANN, Complex algebraic curves via their links at infinity, Inv. Math., 98 (1989), 445-489. Zbl0734.57011MR91c:57014
  22. [22] G.S. PETROV, Number of zeros of complete elliptic integrals, Funct. Anal. Appl., 18 (1984), 73-74. Zbl0547.14003MR85j:33002
  23. [23] G.S. PETROV, Elliptic integrals and their nonoscillation, Funct. Anal. Appl., 20 (1986), 37-40. Zbl0656.34017MR87f:58031
  24. [24] G.S. PETROV, Nonoscillation of elliptic integrals, Funct. Anal. Appl., 24 (1990), 45-50. Zbl0738.33013MR92c:33036
  25. [25] L.S. PONTRYAGIN, On dynamic systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz., 4 (1934), 234-238, in russian. 
  26. [26] R. ROUSSARIE, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Math., (2), vol.17 (1986), 67-101. Zbl0628.34032
  27. [27] C. ROUSSEAU, H. ŹOLADEK, Zeros of complete elliptic integrals for 1: 2 resonance, J. Diff. Equations, 94 (1991), 41-54. Zbl0738.33014MR92j:58086
  28. [28] M. SEBASTIANI, Preuve d'une conjecture de Brieskorn, Manuscripta Math., 2 (1970), 301-308. Zbl0194.11402MR42 #2510
  29. [29] H. ŹOLADEK, Abelian integrals in unfolding of codimension 3 singular planar vector firlds, in 'Bifurcations of Planar Vector Fields', Lecture Notes in Math., vol. 1480, Springer (1991). 
  30. [30] H. ŹOLADEK, Quadratic systems with center and their perturbations, J. Diff. Equations, 109 (1994), 223-273. Zbl0797.34044MR95b:34047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.