Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 2, page 611-652
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGavrilov, Lubomir. "Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields." Annales de l'institut Fourier 49.2 (1999): 611-652. <http://eudml.org/doc/75348>.
@article{Gavrilov1999,
abstract = {Let $\{\cal A\}$ be the real vector space of Abelian integrals\begin\{\}I(h)=\int \int \_\{\lbrace H\le h\rbrace \} R(x,y) dx\wedge dy,\;h\in [0,\tilde\{h\}]\end\{\}where $H(x,y)=(x^2+y^2)/2+\ldots $ is a fixed real polynomial, $R(x,y)$ is an arbitrary real polynomial and $\lbrace H\le h\rbrace $, $h\in [0,\tilde\{h\}]$, is the interior of the oval of $H$ which surrounds the origin and tends to it as $h\rightarrow 0$. We prove that if $H(x,y)$ is a semiweighted homogeneous polynomial with only Morse critical points, then $\{\cal A\}$ is a free finitely generated module over the ring of real polynomials $\{\Bbb R\}[h]$, and compute its rank. We find the generators of $\{\cal A\}$ in the case when $H$ is an arbitrary cubic polynomial. Finally we apply this in the study of degree $n$ polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is $n-1$.},
author = {Gavrilov, Lubomir},
journal = {Annales de l'institut Fourier},
keywords = {abelian integrals; limit cycles; Morse critical points; generators of ; Hamiltonian vector fields},
language = {eng},
number = {2},
pages = {611-652},
publisher = {Association des Annales de l'Institut Fourier},
title = {Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields},
url = {http://eudml.org/doc/75348},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Gavrilov, Lubomir
TI - Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 611
EP - 652
AB - Let ${\cal A}$ be the real vector space of Abelian integrals\begin{}I(h)=\int \int _{\lbrace H\le h\rbrace } R(x,y) dx\wedge dy,\;h\in [0,\tilde{h}]\end{}where $H(x,y)=(x^2+y^2)/2+\ldots $ is a fixed real polynomial, $R(x,y)$ is an arbitrary real polynomial and $\lbrace H\le h\rbrace $, $h\in [0,\tilde{h}]$, is the interior of the oval of $H$ which surrounds the origin and tends to it as $h\rightarrow 0$. We prove that if $H(x,y)$ is a semiweighted homogeneous polynomial with only Morse critical points, then ${\cal A}$ is a free finitely generated module over the ring of real polynomials ${\Bbb R}[h]$, and compute its rank. We find the generators of ${\cal A}$ in the case when $H$ is an arbitrary cubic polynomial. Finally we apply this in the study of degree $n$ polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is $n-1$.
LA - eng
KW - abelian integrals; limit cycles; Morse critical points; generators of ; Hamiltonian vector fields
UR - http://eudml.org/doc/75348
ER -
References
top- [1] N. A'CAMPO, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, I, Math. Ann., 213 (1975), 1-32. Zbl0316.14011MR51 #13282
- [2] V.I. ARNOLD, S.M. GUSEIN-ZADE, A.N. VARCHENKO, Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics, Birkhäuser, Boston, 1985 and 1988.
- [3] V.I. ARNOLD, Yu. S. IL'YASHENKO, Ordinary Differential Equations, in ‘Dynamical Systems, I', Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988. Zbl0718.34070
- [4] V.I. ARNOLD, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988.
- [5] E. BRIESKORN, Die Monodromie der isolierten Singularitäten von Hyperfläschen, Manuscripta Math., 2 (1970), 103-161. Zbl0186.26101MR42 #2509
- [6] L. GAVRILOV, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity, 10 (1997), 433-448. Zbl0949.34077MR98b:58143
- [7] L. GAVRILOV, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math., 122 (1998), 571-584. Zbl0964.32022MR99m:32043
- [8] L. GAVRILOV, Nonoscillation of elliptic integrals related to cubic polynomials of order three, Bull. London Math. Soc., 30 (1998), 267-273. Zbl0959.37039MR99a:34077
- [9] L. GAVRILOV, Modules of Abelian integrals, Proc. of the IVth Catalan days of applied mathematics, p. 35-45, Tarragona, Spain, 1998. Zbl0911.32047MR99e:32064
- [10] L. GAVRILOV, E. HOROZOV, Limit cycles of perturbations of quadratic vector fields, J. Math. Pures Appl., 72 (1993), 213-238. Zbl0829.58034MR94d:58121
- [11] P.A. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
- [12] E. HOROZOV, I. ILIEV, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 11 (1998), 1521-1537. Zbl0921.58044MR99j:34036
- [13] E. HOROZOV, I.D. ILIEV, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. London Math. Soc., 69 (1994), 198-224. Zbl0802.58046MR95e:58146
- [14] S.M. HUSEIN-ZADE, Dynkin digrams of singularities of functions of two variables, Functional Anal. Appl., 8 (1974), 10-13, 295-300. Zbl0309.14006
- [15] I.D. ILIEV, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161. Zbl0920.34037MR99a:34082
- [16] I.D. ILIEV, Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Diff. Equations, 1 (1996), 689-708. Zbl0851.34042MR97k:34039
- [17] Yu. IL'YASHENKO, Dulac's memoir “On Limit Cycles” and related problems of the local theory of differential equations, Russian Math. Surveys, 40 (1985), 1-49. Zbl0668.34032
- [18] B. MALGRANGE, Intégrales asymptotiques et monodromie, Ann. scient. Ec. Norm. Sup., 7 (1974), 405-430. Zbl0305.32008MR51 #8459
- [19] P. MARDEŠIĆ, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergod. Th. and Dynam. Sys., 10 (1990), 523-529. Zbl0691.58031MR92b:58191
- [20] P. MARDEŠIĆ, Chebishev systems and the versal unfolding of the cusp of order n, Hermann, collection Travaux en Cours, 1998. Zbl0904.58044
- [21] W.D. NEUMANN, Complex algebraic curves via their links at infinity, Inv. Math., 98 (1989), 445-489. Zbl0734.57011MR91c:57014
- [22] G.S. PETROV, Number of zeros of complete elliptic integrals, Funct. Anal. Appl., 18 (1984), 73-74. Zbl0547.14003MR85j:33002
- [23] G.S. PETROV, Elliptic integrals and their nonoscillation, Funct. Anal. Appl., 20 (1986), 37-40. Zbl0656.34017MR87f:58031
- [24] G.S. PETROV, Nonoscillation of elliptic integrals, Funct. Anal. Appl., 24 (1990), 45-50. Zbl0738.33013MR92c:33036
- [25] L.S. PONTRYAGIN, On dynamic systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz., 4 (1934), 234-238, in russian.
- [26] R. ROUSSARIE, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Math., (2), vol.17 (1986), 67-101. Zbl0628.34032
- [27] C. ROUSSEAU, H. ŹOLADEK, Zeros of complete elliptic integrals for 1: 2 resonance, J. Diff. Equations, 94 (1991), 41-54. Zbl0738.33014MR92j:58086
- [28] M. SEBASTIANI, Preuve d'une conjecture de Brieskorn, Manuscripta Math., 2 (1970), 301-308. Zbl0194.11402MR42 #2510
- [29] H. ŹOLADEK, Abelian integrals in unfolding of codimension 3 singular planar vector firlds, in 'Bifurcations of Planar Vector Fields', Lecture Notes in Math., vol. 1480, Springer (1991).
- [30] H. ŹOLADEK, Quadratic systems with center and their perturbations, J. Diff. Equations, 109 (1994), 223-273. Zbl0797.34044MR95b:34047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.