A weighted graph polynomial from chromatic invariants of knots
Steven D. Noble; Dominic J. A. Welsh
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 3, page 1057-1087
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNoble, Steven D., and Welsh, Dominic J. A.. "A weighted graph polynomial from chromatic invariants of knots." Annales de l'institut Fourier 49.3 (1999): 1057-1087. <http://eudml.org/doc/75356>.
@article{Noble1999,
abstract = {Motivated by the work of Chmutov, Duzhin and Lando on Vassiliev invariants, we define a polynomial on weighted graphs which contains as specialisations the weighted chromatic invariants but also contains many other classical invariants including the Tutte and matching polynomials. It also gives the symmetric function generalisation of the chromatic polynomial introduced by Stanley. We study its complexity and prove hardness results for very restricted classes of graphs.},
author = {Noble, Steven D., Welsh, Dominic J. A.},
journal = {Annales de l'institut Fourier},
keywords = {knots; chromatic invariants; weighted graphs; graph polynomial},
language = {eng},
number = {3},
pages = {1057-1087},
publisher = {Association des Annales de l'Institut Fourier},
title = {A weighted graph polynomial from chromatic invariants of knots},
url = {http://eudml.org/doc/75356},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Noble, Steven D.
AU - Welsh, Dominic J. A.
TI - A weighted graph polynomial from chromatic invariants of knots
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 1057
EP - 1087
AB - Motivated by the work of Chmutov, Duzhin and Lando on Vassiliev invariants, we define a polynomial on weighted graphs which contains as specialisations the weighted chromatic invariants but also contains many other classical invariants including the Tutte and matching polynomials. It also gives the symmetric function generalisation of the chromatic polynomial introduced by Stanley. We study its complexity and prove hardness results for very restricted classes of graphs.
LA - eng
KW - knots; chromatic invariants; weighted graphs; graph polynomial
UR - http://eudml.org/doc/75356
ER -
References
top- [1] J.D. ANNAN, Complexity of Counting Problems, Ph.D. thesis, Oxford University, 1994. Zbl0809.05086
- [2] S.V. CHMUTOV, S.V. DUZHIN, S.K. LANDO, Vassiliev knot invariants: I, Introduction, Advances Soviet Math., 21 (1994), 117-126. Zbl0956.57009MR96i:57002
- [3] S.V. CHMUTOV, S.V. DUZHIN, S.K. LANDO, Vassiliev knot invariants: II, Intersection graph for trees, Advances Soviet Math., 21 (1994), 127-134. Zbl0956.57010
- [4] S.V. CHMUTOV, S.V. DUZHIN, S.K. LANDO, Vassiliev knot invariants: III, Forest algebra and weighted graphs, Advances Soviet Math., 21 (1994), 135-145. Zbl0956.57011MR96i:57004
- [5] G.E. FARR, A correlation inequality involving stable sets and chromatic polynomials, J. Combinatorial Theory, Series B, 58 (1993), 14-21. Zbl0733.05038MR94a:05177
- [6] M.R. GAREY, D.S. JOHNSON, Computers and Intractability, W.H. Freeman, New York, 1979.
- [7] M.R. GAREY, D.S. JOHNSON, G.L. MILLER, C.H. PAPADIMITRIOU, The complexity of colouring circular arcs and chords, SIAM J. Algebraic and Discrete Methods, 1 (1980), 216-227. Zbl0499.05058MR81g:68065
- [8] F. JAEGER, Tutte polynomials and link polynomials, Proc. Amer. Math. Soc., 103 (1988), 647-654. Zbl0665.57006MR89i:57004
- [9] F. JAEGER, D.L. VERTIGAN, D.J.A. WELSH, On the computational complexity of the Jones and Tutte polynomials, Proc. Cambridge Phil. Soc., 108 (1990), 35-53. Zbl0747.57006MR91h:05038
- [10] R.M. KARP, Reducibility among combinatorial problems, in J.W. Thatcher, R.E. Miller, eds., Complexity of Computer Computations, Plenum Press, New York, 1972. Zbl0366.68041MR51 #14644
- [11] R.M. KARP, On the complexity of combinatorial problems, Networks, 5 (1975), 45-68. Zbl0324.05003MR50 #15871
- [12] J. LIEBERUM, Chromatic weight systems and the corresponding knot invariants, University of Strasbourg, preprint, 1996. Zbl0957.57010
- [13] N. LINIAL, Hard enumeration problems in geometry and combinatorics, SIAM J. Alg. Discrete Methods, 7 (1986), 331-335. Zbl0596.68041MR87e:68029
- [14] I.G. MACDONALD, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, New York, 1979. Zbl0487.20007MR84g:05003
- [15] J.G. OXLEY, D.J.A. WELSH, The Tutte polynomial and percolation, in Graph Theory and Related Topics, J.A. Bondy, U.S.R. Murty, eds., Academic Press, London, 1979. Zbl0498.05018MR81a:05031
- [16] J.G. OXLEY, G.P. WHITTLE, Tutte invariants for 2-polymatroids, in Graph Structure Theory, N. Robertson, P.D. Seymour, eds., Contemp. Math., Amer. Math. Soc., 147 (1993), 9-19. Zbl0787.05023MR1224695
- [17] I. SARMIENTO, Private Communication.
- [18] R.P. STANLEY, A symmetric function generalisation of the chromatic polynomial of a graph, Advances in Math., 111 (1995), 166-194. Zbl0831.05027MR96b:05174
- [19] R.P. STANLEY, Graph colourings and related symmetric functions: ideas and applications. A description of results, interesting applications, & notable open problems, Discrete Math., 193 (1998), 267-286. Zbl1061.05508MR2000c:05152
- [20] W.T. TUTTE, A contribution to the theory of chromatic polynomials, Canadian J. Math., 6 (1954), 80-91. Zbl0055.17101MR15,814c
- [21] D.J.A. WELSH, Complexity: Knots, Colourings, and Counting, London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge, 186 (1993). Zbl0799.68008MR94m:57027
- [22] S. WILLERTON, Review of Chmutov, Duzhin and Lando, Vassiliev knot invariants: I-III, Math. Reviews, 96i57002 (1996).
- [23] S. WILLERTON, Vassiliev invariants and the Hopf algebra of chord diagrams, Proc. Cambridge Phil. Soc., 119 (1996), 55-65. Zbl0878.57013MR96h:57009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.