Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines

Roland Bacher; Pierre de La Harpe; Boris Venkov

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 3, page 727-762
  • ISSN: 0373-0956

Abstract

top
Given a root system R in one of the families A, B, C, D, F, G and the free abelian group that it generates, we compute explicitly the growth series of this group with respect to R . The results can be interpreted in terms of the Ehrhart polynomial of the convex hull of R .

How to cite

top

Bacher, Roland, La Harpe, Pierre de, and Venkov, Boris. "Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines." Annales de l'institut Fourier 49.3 (1999): 727-762. <http://eudml.org/doc/75360>.

@article{Bacher1999,
abstract = {Étant donnés un système de racines $R$ d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à $R.$ Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de $R$.},
author = {Bacher, Roland, La Harpe, Pierre de, Venkov, Boris},
journal = {Annales de l'institut Fourier},
keywords = {Coxeter groups; Ehrhart polynomials; root systems; words in groups},
language = {fre},
number = {3},
pages = {727-762},
publisher = {Association des Annales de l'Institut Fourier},
title = {Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines},
url = {http://eudml.org/doc/75360},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Bacher, Roland
AU - La Harpe, Pierre de
AU - Venkov, Boris
TI - Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 727
EP - 762
AB - Étant donnés un système de racines $R$ d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à $R.$ Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de $R$.
LA - fre
KW - Coxeter groups; Ehrhart polynomials; root systems; words in groups
UR - http://eudml.org/doc/75360
ER -

References

top
  1. [BaG] M. BAAKE et U. GRIMM, Coordination sequences for root lattices and related graphs, Zeitschrift für Kristallographie, 212 (1997), 253-256. Zbl0921.05058MR2000h:05110
  2. [BHV] R. BACHER, P. de la HARPE et B. VENKOV, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 Sér. I (1997), 1137-1142. Zbl0917.52006MR98k:52029
  3. [Ben] M. BENSON, Growth series of finite extensions of ℤn are rational, Inventiones Math., 73 (1983), 251-269. Zbl0498.20022MR85e:20026
  4. [Bil] N. BILLINGTON, Growth of groups and graded algebras : erratum, Communications in Algebra, 13(3) (1985), 753-755. Zbl0558.20024MR86e:20039b
  5. [Bou] N. BOURBAKI, Groupes et algèbres de Lie (chapitres 4, 5 et 6), Hermann, 1968. 
  6. [Br1] M. BRION, Points entiers dans les polytopes convexes, Séminaire Bourbaki, mars 1994, Astérisque 227, Soc. Math. France (1995), 145-169. Zbl0847.52015MR96e:11123
  7. [Br2] M. BRION, Polytopes convexes entiers, Gazette des mathématiciens, 67 (janvier 1996), 21-42. Zbl0878.52005MR97d:52022
  8. [CoG] J.H. CONWAY et R.K. GUY, The book of numbers, Springer, 1996. Zbl0866.00001MR98g:00004
  9. [CS1] J.H. CONWAY et N.J.A. SLOANE, The cell structure of certain lattices, in “Miscellanea Mathematics”, édité par P. Hilton, F. Hirzebruch et R. Remmert, Springer (1991), 72-107. Zbl0738.52014
  10. [CS2] J.H. CONWAY et N.J.A. SLOANE, Sphere packings, lattices and groups (second edition), Springer, 1993. 
  11. [CS3] J.H. CONWAY et N.J.A. SLOANE, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond., Ser. A, 453 (1997), 2369-2389. Zbl1066.11505MR98j:11051
  12. [Cox] H.S.M. COXETER, The polytopes with regular-prismatic vertex figures, Phil. Trans. Royal Soc. of London, Ser. A, 229 (1930), 329-425. Zbl56.1119.03JFM56.1119.03
  13. [Ebe] W. EBELING, Lattices and codes (a course partially based on lectures by F. Hirzebruch), Vieweg, 1994. Zbl0805.11048
  14. [Ehr] EHRHART, Sur un problème de géométrie diophantienne linéaire, J. reine angew. Math., 226 (1967), 1-29. Zbl0155.37503MR35 #4184
  15. [GKP] R.L. GRAHAM, D.E. KNUTH et O. PATASHNIK, Concrete mathematics, Addison-Wesley, 1991. 
  16. [HiC] D. HILBERT and S. COHN-VOSSEN, Geometry and the imagination, Chelsea Publishing Company, 1952 and 1983. Zbl0047.38806
  17. [Kla] D.A. KLARNER, Mathematical crystal growth II, Discrete Applied Math., 3 (1981), 113-117. Zbl0466.05007MR83a:05018
  18. [KoM] A.I. KOSTRIKIN and Yu. I. MANIN, Linear algebra and geometry, Gordon and Breach, 1989. 
  19. [Pa1] D.I. PANYUSHEV, Multiplicities of weights of some representations and convex polytopes, Functional Analysis and its Applications, 28-4 (1994), 293-295. Zbl0866.22015MR95k:22017
  20. [Pa2] D.I. PANYUSHEV, Cones of highest weight vectors, weight polytopes, and Lusztig's q-analog, Transformation Groups, 2 (1997), 91-115. Zbl0891.22013MR98j:22017
  21. [PoS] G. PÓLYA and G. SZEGÖ, Problems and theorems in analysis, volume I and II, Springer, 1972 and 1976. 
  22. [Ser] J-P. SERRE, Cours d'arithmétique, P.U.F., 1970. Zbl0225.12002MR41 #138
  23. [Sta] R.P. STANLEY, Enumerative combinatorics, Volume I, Wadsworth and Brooks, 1986. Zbl0608.05001MR87j:05003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.