Points entiers dans les polytopes convexes

Michel Brion

Séminaire Bourbaki (1993-1994)

  • Volume: 36, page 145-169
  • ISSN: 0303-1179

How to cite

top

Brion, Michel. "Points entiers dans les polytopes convexes." Séminaire Bourbaki 36 (1993-1994): 145-169. <http://eudml.org/doc/110182>.

@article{Brion1993-1994,
author = {Brion, Michel},
journal = {Séminaire Bourbaki},
keywords = {lattice polytopes; Ehrhart polynomial; polytope ring; toric varieties; Todd classes; -theory},
language = {fre},
pages = {145-169},
publisher = {Société Mathématique de France},
title = {Points entiers dans les polytopes convexes},
url = {http://eudml.org/doc/110182},
volume = {36},
year = {1993-1994},
}

TY - JOUR
AU - Brion, Michel
TI - Points entiers dans les polytopes convexes
JO - Séminaire Bourbaki
PY - 1993-1994
PB - Société Mathématique de France
VL - 36
SP - 145
EP - 169
LA - fre
KW - lattice polytopes; Ehrhart polynomial; polytope ring; toric varieties; Todd classes; -theory
UR - http://eudml.org/doc/110182
ER -

References

top
  1. [Bi1] A. Bialynicki-Birula: Some theorems on actions of algebraic groups, Ann. of Math.98, 480-497 (1973). Zbl0275.14007MR366940
  2. [Bi2] A. Bialynicki-Birula: Some properties of the decomposition of algebraic varieties determined by actions of a torus, Bull. Acad. Polo. Ser. Sci. Math. Astronom. Phys.24, 667-674 (1976). Zbl0355.14015MR453766
  3. [Bo-Se] A. Borel, J.P. Serre: Le théorème de Riemann-Roch (d'après Grothendieck), Bull. Soc. Math. France86, 97-136, 1958. Zbl0091.33004MR116022
  4. [Ca] P. Cartier: Décomposition des polyèdres: le point sur le troisième problème de Hilbert, Sém. Bourbaki, exp. n° 646 (juin 1985), Astérisque133-134, 1986, 261-288. Zbl0589.51032MR837225
  5. [CaSh] S.E. Cappell, J.L. Shaneson: Genera of algebraic varieties and counting of lattice points, preprint 1993. MR1217352
  6. [Da] V.I. Danilov: The geometry of toric varietes, Russian Math. Surveys33, 97-154, 1978. Zbl0425.14013MR495499
  7. [Eh1] E. Ehrhart: Sur un problème de géométrie diophantienne linéaire I. Polyèdres et réseaux, J. Reine Angew. Math.226, 1-29, 1967. Zbl0155.37503MR213320
  8. [Eh2] E. Ehrhart: Nombre de points entiers d'un tétraèdre, C. R. Acad. Sci. Paris, t. 258, Série I, 3945-3948, 1964. Zbl0124.27503MR161822
  9. [Eh3] E. Ehrhart: Démonstration de la loi de réciprocité pour le polyèdre convexe entier, C. R. Acad. Sci. Paris, t. 265, Série I, 5-7, 1967. Zbl0147.30701MR245520
  10. [Eh4] E. Ehrhart: Polynômes arithmétiques et méthode des polyèdres en combinatoire, International series of numerical mathematics35, Birkhäuser1977. Zbl0337.10019MR432556
  11. [Fu1] W. Fulton: Intersection theory, Springer-Verlag1984. Zbl0541.14005MR732620
  12. [Fu2] W. Fulton: Introduction to toric varieties, Annals of Mathematical Studies131, Princeton University Press1993. Zbl0813.14039MR1234037
  13. [Hi] T. Hibi: Ehrhart polynomials of convex polytopes, h-vectors of simplicial 
  14. complexes, and nonsingular projective toric varieties, dans: Discrete and computational geometry, 165-177, Amer. Math. Soc., Providence1991. 
  15. [Ka] J.M. Kantor: Sur le polynôme associé à un polytope à sommets entiers dans Rn, C. R. Acad. Sci. Paris, t. 314, Série I, 669-672, 1992. Zbl0758.52011MR1162591
  16. [KK1] J.M. Kantor, A.V. Khovanskii: Integral points in convex polyhedra, combinatorial Riemann-Roch theorem and generalized Euler-MacLaurin formula, prépublication de l'I.H.E.S., juin 1992. 
  17. [KK2] J.M. Kantor, A.V. Khovanskii: Une application du théorème de Riemann-Roch combinatoire au polynôme d'Ehrhart des polytopes entiers de Rd, C. R. Acad. Sci. Paris, t. 317, Série I, 501-507, 1993. Zbl0791.52012MR1239038
  18. [Kl] A.A. Klyachko: Vector bundles on Demazure models, Sel. Math. Sov.3, 41-44, 1983/84. Zbl0611.14016MR732451
  19. [La] R. Laterveer: Weighted complete intersections and lattice points, preprint 1993. MR1318155
  20. [Mc1] P. McMullen: The polytope algebra, Adv. in Math.78, 76-130, 1989. Zbl0686.52005MR1021549
  21. [Mc2] P. McMullen: Valuations and dissections, dans: Handbook of Convex Geometry, Volume B, 933-988, North-Holland1993. Zbl0791.52014MR1243000
  22. [McSc] P. McMullen, R. Schneider: Valuations on convex bodies, dans: Convexity and its applications, édité par P. M. Gruber et J. M. Wills, Birkhuser1983. Zbl0534.52001MR731112
  23. [Mord] L.J. Mordell: Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc.15, 41-46, 1951. Zbl0043.05101MR43815
  24. [M1] R. Morelli: A theory of polyhedra, Adv. in Math.97, 1-73, 1993. Zbl0779.52016MR1200289
  25. [M2] R. Morelli: Translation scissors congruence, Adv. in Math.100, 1-27, 1993. Zbl0789.52015MR1224525
  26. [M3] R. Morelli: The K-theory of a toric variety, Adv. in Math.100, 154-182, 1993. Zbl0805.14025MR1234308
  27. [M4] R. Morelli: The Todd class of a toric variety, Adv. in Math.100, 182-231, 1993. Zbl0797.14018
  28. [Od] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of torus embeddings, Springer-Verlag1988. Zbl0628.52002MR922894
  29. [Pi] G. Pick: Geometrisches zur Zahlenlehre, Naturwiss. Z. Logos, Prag.311-319, 1899. JFM31.0215.03
  30. [Po] J.E. Pommersheim: Toric varieties, lattice points and Dedekind sums, Math. Ann.295, 1-24, 1993. Zbl0789.14043MR1198839
  31. [PK1] A.V. Pukhlikov, A.G. Khovanskii: Finitely additive measures of virtual polytopes, St. Petersburg Math. J.4, 337-356, 1993. Zbl0791.52010MR1182399
  32. [PK2] A.V. Pukhlikov, A.G. Khovanskii: A Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes, St. Petersburg Math. J.4, 789-812, 1993. Zbl0798.52010MR1190788
  33. [Ra] H. Rademacher: Generalization of the reciprocity formula for the Dedekind sums, Duke Math. J.21, 391-398, 1954. Zbl0057.03801MR62765
  34. [RaGr] H. Rademacher, E. Grosswald: Dedekind sums, Carus Math. Monogr.16, Washington, Mathematical Association of America1972. Zbl0251.10020MR357299
  35. [Re] J.E. Reeve: On the volume of lattice polyhedra, Proc. London Math. Soc. (3) 7, 378-395, 1957. Zbl0080.26701MR95452
  36. [St] R.P. Stanley: On the Hilbert function of a graded Cohen-Macaulay domain, J. Pure Appl. Alg.73, 307-314, 1991. Zbl0735.13010MR1124790
  37. [Te] B. Teissier: Variétés toriques et polytopes, Sém. Bourbaki, exp. n° 565 (novembre 1980), Lect. Notes in Math.901, 1981, 71-84. Zbl0494.52010MR647489
  38. [Th] R.W. Thomason: Algebraic K-theory of group scheme actions, dans: AIgebraic topology and algebraic K-theory, 539-563, Annals of Math. Studies113, 1987, Princeton Univ. Press. Zbl0701.19002MR921490

NotesEmbed ?

top

You must be logged in to post comments.