Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 3, page 763-782
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBannai, Eiichi. "Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)." Annales de l'institut Fourier 49.3 (1999): 763-782. <http://eudml.org/doc/75361>.
@article{Bannai1999,
abstract = {Modular invariance property of association schemes is recalled in connection with our joint work with François Jaeger. Then we survey codes over $F_2$ discussing how codes, through their (various kinds of) weight enumerators, are related to (various kinds of) modular forms through polynomial invariants of certain finite group actions and theta series. Recently, not only codes over an arbitrary finite field but also codes over finite rings and finite abelian groups are considered and have been studied extensively. We show how the determination of the solutions of the modular invariance property of finite abelian groups (our joint work with Jaeger) is used to define the concept of Type II codes over arbitrary finite abelian groups. As an example of the usefulness of such Type II codes, we give an application to hermitian modular forms.},
author = {Bannai, Eiichi},
journal = {Annales de l'institut Fourier},
keywords = {modular invariance; association scheme; spin model; code over finite ring; type II code; hermitian modular form},
language = {eng},
number = {3},
pages = {763-782},
publisher = {Association des Annales de l'Institut Fourier},
title = {Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)},
url = {http://eudml.org/doc/75361},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Bannai, Eiichi
TI - Modular invariance property of association schemes, type II codes over finite rings and finite abelian groups and reminiscences of François Jaeger (a survey)
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 763
EP - 782
AB - Modular invariance property of association schemes is recalled in connection with our joint work with François Jaeger. Then we survey codes over $F_2$ discussing how codes, through their (various kinds of) weight enumerators, are related to (various kinds of) modular forms through polynomial invariants of certain finite group actions and theta series. Recently, not only codes over an arbitrary finite field but also codes over finite rings and finite abelian groups are considered and have been studied extensively. We show how the determination of the solutions of the modular invariance property of finite abelian groups (our joint work with Jaeger) is used to define the concept of Type II codes over arbitrary finite abelian groups. As an example of the usefulness of such Type II codes, we give an application to hermitian modular forms.
LA - eng
KW - modular invariance; association scheme; spin model; code over finite ring; type II code; hermitian modular form
UR - http://eudml.org/doc/75361
ER -
References
top- [1] C. BACHOC, Applications of coding theory to the construction of modular lattices, J. Combinatorial Theory, (A) 78 (1997), 173-187. Zbl0876.94053MR98a:11084
- [2] E. BANNAI, Association schemes and fusion algebras (an introduction), J. Algebraic Combinatorics, 2 (1993), 327-344. Zbl0790.05098MR94f:05148
- [3] E. BANNAI, Invariant rings of finite groups and automorphic forms (a survey) (in Japanese), Algebra Symposium Proceedings (at Yamagata University, July 24-27, 1996), 42 (1996), 173-187.
- [4] E. BANNAI and E. BANNAI, Modular invariance of the character table of the Hamming association scheme H(d, q), J. Number Theory, 57 (1994), 79-92. Zbl0799.05068MR95a:05117
- [5] E. BANNAI and E. BANNAI, Generalized spin models and association schemes, Memoire of Fac. Sci. Kyushu University, Ser (A), 47 (1993), 379-409. Zbl0797.05082MR95b:05217
- [6] E. BANNAI, E. BANNAI, T. IKUTA and K. KAWAGOE, Spin models constructed from Hamming association schemes, Proceedings of 10th Algebraic Combinatorics Symposium at Gifu, 1992, 91-106.
- [7] E. BANNAI, E. BANNAI and F. JAEGER, On spin models, modular invariance, and duality, J. Algebraic Combinatorics, 6 (1997), 203-228. Zbl0880.05083
- [8] E. BANNAI, E. BANNAI, M. OZEKI and Y. TERANISHI, On the ring of simultaneous invariants of the Gleason-MacWilliams group (preprint). Zbl0944.15022
- [9] E. BANNAI, S. DOUGHERTY, M. HARADA and M. OURA, The II codes, even unimodular lattices and invariant rings, IEEE Trans. Inform. Theory (to appear). Zbl0958.94042
- [10] E. BANNAI, M. HARADA, A. MUNEMASA and M. OURA, Type II codes over F2+uF2 and applications to hermitian modular forms (a tentative title), in preparation. Zbl0957.11501
- [11] E. BANNAI and T. ITO, Algebraic Combinatorics, I, Benjamin/Cummings, 1984. Zbl0555.05019MR87m:05001
- [12] E. BANNAI and M. OZEKI, Construction of Jacobi forms from certain combinatorial polynomials, Proc. Japan Acad. (A), 72 (1996), 12-15. Zbl0860.11026MR98a:11060
- [12bis] Etsuko BANNAI and A. MUNEMASA, Duality maps of finite abelian groups and their applications to spin models, J. Algebraic Combinatorics, 8 (1998), 223-234. Zbl0927.05084MR99j:20058
- [13] A. BONNECAZE, P. SOLÉ, C. BACHOC and B. MOURRAIN, Type II codes over Z4, IEEE Trans. Inform. Theory, 43 (1997), 969-976. Zbl0898.94009MR98e:94025
- [14] M. BROUÉ and M. ENGUEHARD, Polynômes des poids de certains codes et fonctions theta de certains réseaux, Ann. Sci. Ecole Norm. Sup., 5 (1972), 157-181. Zbl0254.94016MR48 #3596
- [15] J. H. CONWAY and N. J. A. SLOANE, Sphere Packings, Lattices and Groups, Springer-Verlag, 1988. Zbl0634.52002
- [16] B. CURTIN and K. NOMURA, Some formulas for spin models for distance-regular graphs (to appear). Zbl0930.05101
- [17] P. DELSARTE, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplments, 10 (1973), 125-136. Zbl1075.05606
- [18] S. T. DOUGHERTY, P. GABORIT, M. HARADA and P. SOLÉ, Type II codes over F2 + uF2, IEEE Trans. Inform. Theory (to appear). Zbl0947.94023
- [19] S. T. DOUGHERTY, T. A. GULLIVER and M. HARADA, Type II self-dual codes over finite rings and even unimodular lattices, J. Algebraic Combinatorics (to appear). Zbl0958.94037
- [20] W. DUKE, On codes and Siegel modular forms, International Math. Res. Notes, (1993), 125-136. Zbl0785.94008MR94d:11029
- [21] W. EBELING, Lattices and Codes, a course partially based on lectures by F. Hirzebruch, Vieweg, 1994. Zbl0805.11048
- [22] M. EICHLER and D. ZAGIER, The Theory of Jacobi Forms, Birkhauser, 1985. Zbl0554.10018MR86j:11043
- [23] E. FREITAG, Siegelsche Modulfunktionen, Springer, 1983. Zbl0498.10016MR88b:11027
- [24] E. FREITAG, Modulformen zweiten Grades zum rationalen und Gausssehen Zahlkorper, Sitzungsber. Heidelberg Akad. Wiss., 1967, 3-49. Zbl0156.09203
- [25] P. GABORIT, Mass formulas for self-dual codes over Z4 and Fq + uFq rings, IEEE Trans. on Inf. Theory, 42 (1996), 1222-1228. Zbl0854.94013MR99c:94042
- [26] A. M. GLEASON, Weight polynomials of self-dual codes and the MacWilliams identities, Actes Congrès Intern. Math., 3 (1970), 211-215. Zbl0287.05010MR54 #12354
- [27] A. R. HAMMONS, JR., P. V. KUMAR, A. R. CALDERBANK, N. J. A. SLOANE and P. SOLÉ, The Z4-linearlity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. on Inf. Theory, 40 (1994), 301-319. Zbl0811.94039
- [28] J. IGUSA, On Siegel modular forms of genus 2, (1) and (II), Amer. J. Math., 84, 88 (1962) (1966), 175-200, 221-236.
- [29] F. JAEGER, Strongly regular graphs and spin models for the Kauffman polynomial, Geomet. Dedicata, 44 (1992), 23-52. Zbl0773.57005MR94e:57008
- [30] F. JAEGER, Spin models for link invariants, in “Survey in Combinatorics, 1995”, London Math. Soc., Lecture Notes Series, 218 (1995), 71-101. Zbl0831.05064MR96j:57008
- [31] F. JAEGER, Towards a classification of spin models in terms of association schemes, in Progress in Algebraic Combinatorics, Advanced Studies in Pure Math., 24 (1996), 197-225. Zbl0864.05089MR98g:57012
- [32] F. JAEGER, M. MATSUMOTO and K. NOMURA, Bose-Mesner algebras related to Type II matrices and spin models, J. Algebraic Combinatorics, 8 (1998), 39-72. Zbl0974.05084MR99f:05125
- [33] Y. KAWADA, Uber den Dualitatssatz der Charactere nichtcommutativer Gruppen, Proc. Phys, Math. Soc. Japan, 24 (1942), 97-109. Zbl0063.03172
- [34] A. KRIEG, Modular Forms on Half-Spaces of Quaternions, Springer Lecture Note Series, 1143 (1985). Zbl0564.10032MR87f:11033
- [35] F. J. MACWILLIAMS and N. J. A. SLOANE, The Theory of Error Correcting Codes, North-Holland, 1977. Zbl0369.94008
- [36] B. R. MCDONALD, Finite Rings with Identity, Marcel Dekker, 1974. Zbl0294.16012MR50 #7245
- [37] S. NAGAOKA, A note on the structure of the ring of symmetric Hermitian modular forms of degree 2 over the Gaussian field, J. Math. Soc. Japan, 48 (1996), 525-549. Zbl0872.11027MR97i:11052
- [38] K. NOMURA, Spin models constructed from Hadamard matrices, J. Combinatorial Theory (A), 68 (1994), 251-261. Zbl0808.05100MR95k:05185
- [39] K. NOMURA, An algebra associated with a spin model, J. Algebraic Combinatorics, 6 (1997), 53-58. Zbl0865.05077MR98g:05158
- [40] K. NOMURA, Spin models and Bose-Mesner algebras, Europ. J. Comb., (to appear). Zbl0936.05089
- [41] M. OURA, The dimension formula for the ring of code polynomials in genus 4, Osaka J. Math., 34 (1997), 53-72. Zbl0909.11019MR98f:11039
- [42] M. OZEKI, On the notion of Jacobi polynomials for codes, Math. Proc. Cambridge Phil. Soc., 121 (1997), 15-30. Zbl0888.94028MR98b:11126
- [43] B. RUNGE, On Siegel modular forms, part I, J. reine angew. Math., 436 (1993), 57-85. Zbl0772.11015MR94c:11041
- [44] B. RUNGE, Theta functions and Siegel-Jacobi forms, Acta Mathematica, 175 (1995), 165-196. Zbl0882.11028MR96m:11036
- [45] G. C. SHEPHARD and J. A. TODD, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304. Zbl0055.14305MR15,600b
- [46] D. STANTON, A matrix equation for association schemes, Graphs and Combinatorics, 11 (1995), 103-108. Zbl0828.05065MR97b:05172
- [47] S. TSUYUMINE, On Siegel modular forms of degree three, Amer. J. Math., 108 (1986), 755-862. Zbl0602.10015MR88a:11047a
- [48] J. A. WOOD, Duality for modules over finite rings and applications to coding theory (preprint). Zbl0968.94012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.