Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 1, page 41-96
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBiquard, Olivier. "Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)." Annales scientifiques de l'École Normale Supérieure 30.1 (1997): 41-96. <http://eudml.org/doc/82426>.
@article{Biquard1997,
author = {Biquard, Olivier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Higgs bundle; integrable connections},
language = {fre},
number = {1},
pages = {41-96},
publisher = {Elsevier},
title = {Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)},
url = {http://eudml.org/doc/82426},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Biquard, Olivier
TI - Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 1
SP - 41
EP - 96
LA - fre
KW - Higgs bundle; integrable connections
UR - http://eudml.org/doc/82426
ER -
References
top- [1] O. BIQUARD, Fibrés paraboliques stables et connexions singulières plates (Bull. Soc. Math. France, vol. 119, 1991, p. 231-257). Zbl0769.53013MR93a:58039
- [2] O. BIQUARD, Prolongement d'un fibré holomorphe hermitien à courbure Lp sur une courbe ouverte (Int. J. Math., vol. 3, 1992, p. 441-453). Zbl0764.32008MR93k:32066
- [3] O. BIQUARD, Sur les fibrés paraboliques sur une surface complexe (J. London Math. Soc., vol. 53, 1996, p. 302-316). Zbl0862.53025MR97b:32038
- [4] O. BIQUARD, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes (Math. Ann., vol. 304, 1996, p. 253-276). Zbl0843.53027MR97c:53066
- [5] I. BISWAS et S. RAMANAN, An infinitesimal study of the moduli of Hitchin pairs (J. London Math. Soc., vol. 49, 1994, p. 219-231). Zbl0819.58007MR94k:14006
- [6] E. CATTANI, A. KAPLAN et W. SCHMID, L2 and intersection cohomologies for a polarizable variation of Hodge structure (Inventiones math., vol. 87, 1987, p. 217-252). Zbl0611.14006MR88h:32019
- [7] K. CORLETTE, Flat G-bundles with canonical metrics (J. Differential Geom., vol. 28, 1988, p. 361-382). Zbl0676.58007MR89k:58066
- [8] M. CORNALBA et P. GRIFFITHS, Analytic cycles and vector bundles on non-compact algebraic varieties (Inventiones math., vol. 28, 1975, p. 1-106). Zbl0293.32026MR51 #3505
- [9] S. DONALDSON, A new proof of a theorem of Narasimhan and Seshadri, (J. Differential Geom., vol. 18, 1983, p. 269-277). Zbl0504.49027MR85a:32036
- [10] S. DONALDSON, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles (Proc. London Math. Soc., (3) 50, 1985, p. 1-26). Zbl0529.53018MR86h:58038
- [11] S. DONALDSON, Infinite determinants, stable bundles and curvature (Duke Math. J., vol. 54, 1987, p. 231-247). Zbl0627.53052MR88g:32046
- [12] S. DONALDSON, Twisted harmonic maps and self-duality equations (Proc. London Math. Soc., vol. 55, 1987, p. 127-131). Zbl0634.53046MR88g:58040
- [13] A. FUJIKI, Hyper-Kähler structure on the moduli space of flat bundles (Prospects in complex geometry (Katata and Kyoto, 1989), 1-83, L.N.M. 1468, Springer (Berlin 1991)). Zbl0749.32011
- [14] W. GOLDMAN et J. MILLSON, The deformation theory of representations of fundamental groups of compact Kähler manifolds (Publ. Math. I.H.E.S., vol. 67, 1988, p. 43-96). Zbl0678.53059MR90b:32041
- [15] N. HITCHIN, The self-duality equations on a Riemann surface (Proc. London Math. Soc., vol. 55, 1987, p. 59-126). Zbl0634.53045MR89a:32021
- [16] J. JOST et K. ZUO, Harmonic maps and Sl(r, ℂ)-representations of fundamental groups of quasiprojective manifolds (J. Algebr. Geom., vol. 5, 1996, p. 77-106). Zbl0853.58038MR97a:58043
- [17] J. JOST et K. ZUO, Harmonic maps of infinite energy and rigidity results for archimedean and nonarchimedean representations of fundamental groups of quasiprojective varieties, preprint. Zbl0911.58012
- [18] M. KASHIWARA et T. KAWAI, The Poincaré lemma for variations of polarized Hodge structure (Publ. RIMS Kyoto Univ., vol. 23, 1987, p. 345-407). Zbl0629.14005MR89g:32035
- [19] P. KRONHEIMER et M. MROWKA, Gauge theory for embedded surfaces, I (Topology, vol. 32, 1993, p. 773-826). Zbl0799.57007MR94k:57048
- [20] J. LE POTIER, Fibrés de Higgs et systèmes locaux (Séminaire Bourbaki, exposé 737, 1991). Zbl0762.14011MR93e:14012
- [21] R. LOCKART et R. MCOWEN, Elliptic differential operators on noncompact manifolds (Ann. Scuola. Norm. Sup. Pisa Cl. Sci., (4) 12, 1985, p. 409-447). Zbl0615.58048MR87k:58266
- [22] C. MARGERIN, Fibrés stables et métriques d'Hermite-Einstein, d'après S. K. Donaldson, K. K. Uhlenbeck et S. T. Yau (Séminaire Bourbaki, exposé 683, 1987). Zbl0637.53080
- [23] V. MAZ'YA et B. PLAMENEVSKII, Estimates in Lp and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary (Amer. Math. Soc. Transl., (2) 123, 1984, p. 1-56). Zbl0554.35035
- [24] V. MEHTA et C. SESHADRI, Moduli of vector bundles on curves with parabolic structures (Math. Ann., vol. 248, 1980, p. 205-239). Zbl0454.14006MR81i:14010
- [25] M. NARASIMHAN et C. SESHADRI, Stable and unitary bundles on a compact Riemann surface (Ann. Math., vol. 82, 1965, p. 540-564). Zbl0171.04803MR32 #1725
- [26] N. NITSURE, Moduli of semistable logarithmic connections (J. Amer. Math. Soc., vol. 6, 1993, p. 597-609). Zbl0807.14007MR93i:32025
- [27] C. SIMPSON, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization (J. Amer. Math. Soc., vol. 1, 1988, p. 867-918). Zbl0669.58008MR90e:58026
- [28] C. SIMPSON, Harmonic bundles on noncompact curves (J. Amer. Math. Soc., vol. 3, 1990, p. 713-770). Zbl0713.58012MR91h:58029
- [29] C. SIMPSON, Higgs bundles and local systems (Publ. Math. I.H.E.S., vol. 75, 1992, p. 5-95). Zbl0814.32003MR94d:32027
- [30] K. UHLENBECK et S. T. YAU, On the existence of Hermitian-Yang-Mills connections in stable vector bundles (Commun. Pure Appl. Math., vol. 39S, 1986, p. 257-293). Zbl0615.58045MR88i:58154
- [31] K. UHLENBECK et S. T. YAU, A note on our previous paper : on the existence of Hermitian-Yang-Mills connections in stable vector bundles (Commun. Pure Appl. Math., vol. 42, 1989, p. 703-707). Zbl0678.58041MR90i:58029
- [32] S. ZUCKER, Hodge theory with degenerating coefficients : L2 cohomology in the Poincaré metric (Ann. Math., (2) 109, 1979, p. 415-476). Zbl0446.14002MR81a:14002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.