Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)

Olivier Biquard

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 1, page 41-96
  • ISSN: 0012-9593

How to cite

top

Biquard, Olivier. "Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)." Annales scientifiques de l'École Normale Supérieure 30.1 (1997): 41-96. <http://eudml.org/doc/82426>.

@article{Biquard1997,
author = {Biquard, Olivier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Higgs bundle; integrable connections},
language = {fre},
number = {1},
pages = {41-96},
publisher = {Elsevier},
title = {Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)},
url = {http://eudml.org/doc/82426},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Biquard, Olivier
TI - Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 1
SP - 41
EP - 96
LA - fre
KW - Higgs bundle; integrable connections
UR - http://eudml.org/doc/82426
ER -

References

top
  1. [1] O. BIQUARD, Fibrés paraboliques stables et connexions singulières plates (Bull. Soc. Math. France, vol. 119, 1991, p. 231-257). Zbl0769.53013MR93a:58039
  2. [2] O. BIQUARD, Prolongement d'un fibré holomorphe hermitien à courbure Lp sur une courbe ouverte (Int. J. Math., vol. 3, 1992, p. 441-453). Zbl0764.32008MR93k:32066
  3. [3] O. BIQUARD, Sur les fibrés paraboliques sur une surface complexe (J. London Math. Soc., vol. 53, 1996, p. 302-316). Zbl0862.53025MR97b:32038
  4. [4] O. BIQUARD, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes (Math. Ann., vol. 304, 1996, p. 253-276). Zbl0843.53027MR97c:53066
  5. [5] I. BISWAS et S. RAMANAN, An infinitesimal study of the moduli of Hitchin pairs (J. London Math. Soc., vol. 49, 1994, p. 219-231). Zbl0819.58007MR94k:14006
  6. [6] E. CATTANI, A. KAPLAN et W. SCHMID, L2 and intersection cohomologies for a polarizable variation of Hodge structure (Inventiones math., vol. 87, 1987, p. 217-252). Zbl0611.14006MR88h:32019
  7. [7] K. CORLETTE, Flat G-bundles with canonical metrics (J. Differential Geom., vol. 28, 1988, p. 361-382). Zbl0676.58007MR89k:58066
  8. [8] M. CORNALBA et P. GRIFFITHS, Analytic cycles and vector bundles on non-compact algebraic varieties (Inventiones math., vol. 28, 1975, p. 1-106). Zbl0293.32026MR51 #3505
  9. [9] S. DONALDSON, A new proof of a theorem of Narasimhan and Seshadri, (J. Differential Geom., vol. 18, 1983, p. 269-277). Zbl0504.49027MR85a:32036
  10. [10] S. DONALDSON, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles (Proc. London Math. Soc., (3) 50, 1985, p. 1-26). Zbl0529.53018MR86h:58038
  11. [11] S. DONALDSON, Infinite determinants, stable bundles and curvature (Duke Math. J., vol. 54, 1987, p. 231-247). Zbl0627.53052MR88g:32046
  12. [12] S. DONALDSON, Twisted harmonic maps and self-duality equations (Proc. London Math. Soc., vol. 55, 1987, p. 127-131). Zbl0634.53046MR88g:58040
  13. [13] A. FUJIKI, Hyper-Kähler structure on the moduli space of flat bundles (Prospects in complex geometry (Katata and Kyoto, 1989), 1-83, L.N.M. 1468, Springer (Berlin 1991)). Zbl0749.32011
  14. [14] W. GOLDMAN et J. MILLSON, The deformation theory of representations of fundamental groups of compact Kähler manifolds (Publ. Math. I.H.E.S., vol. 67, 1988, p. 43-96). Zbl0678.53059MR90b:32041
  15. [15] N. HITCHIN, The self-duality equations on a Riemann surface (Proc. London Math. Soc., vol. 55, 1987, p. 59-126). Zbl0634.53045MR89a:32021
  16. [16] J. JOST et K. ZUO, Harmonic maps and Sl(r, ℂ)-representations of fundamental groups of quasiprojective manifolds (J. Algebr. Geom., vol. 5, 1996, p. 77-106). Zbl0853.58038MR97a:58043
  17. [17] J. JOST et K. ZUO, Harmonic maps of infinite energy and rigidity results for archimedean and nonarchimedean representations of fundamental groups of quasiprojective varieties, preprint. Zbl0911.58012
  18. [18] M. KASHIWARA et T. KAWAI, The Poincaré lemma for variations of polarized Hodge structure (Publ. RIMS Kyoto Univ., vol. 23, 1987, p. 345-407). Zbl0629.14005MR89g:32035
  19. [19] P. KRONHEIMER et M. MROWKA, Gauge theory for embedded surfaces, I (Topology, vol. 32, 1993, p. 773-826). Zbl0799.57007MR94k:57048
  20. [20] J. LE POTIER, Fibrés de Higgs et systèmes locaux (Séminaire Bourbaki, exposé 737, 1991). Zbl0762.14011MR93e:14012
  21. [21] R. LOCKART et R. MCOWEN, Elliptic differential operators on noncompact manifolds (Ann. Scuola. Norm. Sup. Pisa Cl. Sci., (4) 12, 1985, p. 409-447). Zbl0615.58048MR87k:58266
  22. [22] C. MARGERIN, Fibrés stables et métriques d'Hermite-Einstein, d'après S. K. Donaldson, K. K. Uhlenbeck et S. T. Yau (Séminaire Bourbaki, exposé 683, 1987). Zbl0637.53080
  23. [23] V. MAZ'YA et B. PLAMENEVSKII, Estimates in Lp and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary (Amer. Math. Soc. Transl., (2) 123, 1984, p. 1-56). Zbl0554.35035
  24. [24] V. MEHTA et C. SESHADRI, Moduli of vector bundles on curves with parabolic structures (Math. Ann., vol. 248, 1980, p. 205-239). Zbl0454.14006MR81i:14010
  25. [25] M. NARASIMHAN et C. SESHADRI, Stable and unitary bundles on a compact Riemann surface (Ann. Math., vol. 82, 1965, p. 540-564). Zbl0171.04803MR32 #1725
  26. [26] N. NITSURE, Moduli of semistable logarithmic connections (J. Amer. Math. Soc., vol. 6, 1993, p. 597-609). Zbl0807.14007MR93i:32025
  27. [27] C. SIMPSON, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization (J. Amer. Math. Soc., vol. 1, 1988, p. 867-918). Zbl0669.58008MR90e:58026
  28. [28] C. SIMPSON, Harmonic bundles on noncompact curves (J. Amer. Math. Soc., vol. 3, 1990, p. 713-770). Zbl0713.58012MR91h:58029
  29. [29] C. SIMPSON, Higgs bundles and local systems (Publ. Math. I.H.E.S., vol. 75, 1992, p. 5-95). Zbl0814.32003MR94d:32027
  30. [30] K. UHLENBECK et S. T. YAU, On the existence of Hermitian-Yang-Mills connections in stable vector bundles (Commun. Pure Appl. Math., vol. 39S, 1986, p. 257-293). Zbl0615.58045MR88i:58154
  31. [31] K. UHLENBECK et S. T. YAU, A note on our previous paper : on the existence of Hermitian-Yang-Mills connections in stable vector bundles (Commun. Pure Appl. Math., vol. 42, 1989, p. 703-707). Zbl0678.58041MR90i:58029
  32. [32] S. ZUCKER, Hodge theory with degenerating coefficients : L2 cohomology in the Poincaré metric (Ann. Math., (2) 109, 1979, p. 415-476). Zbl0446.14002MR81a:14002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.