On spherical nilpotent orbits and beyond

Dmitri I. Panyushev

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1453-1476
  • ISSN: 0373-0956

Abstract

top
We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s θ -groups. This yields a description of spherical nilpotent orbits for the isotropy representation of a symmetric variety.

How to cite

top

Panyushev, Dmitri I.. "On spherical nilpotent orbits and beyond." Annales de l'institut Fourier 49.5 (1999): 1453-1476. <http://eudml.org/doc/75390>.

@article{Panyushev1999,
abstract = {We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s $\theta $-groups. This yields a description of spherical nilpotent orbits for the isotropy representation of a symmetric variety.},
author = {Panyushev, Dmitri I.},
journal = {Annales de l'institut Fourier},
keywords = {semisimple Lie algebra; nilpotent orbit; spherical variety},
language = {eng},
number = {5},
pages = {1453-1476},
publisher = {Association des Annales de l'Institut Fourier},
title = {On spherical nilpotent orbits and beyond},
url = {http://eudml.org/doc/75390},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Panyushev, Dmitri I.
TI - On spherical nilpotent orbits and beyond
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1453
EP - 1476
AB - We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s $\theta $-groups. This yields a description of spherical nilpotent orbits for the isotropy representation of a symmetric variety.
LA - eng
KW - semisimple Lie algebra; nilpotent orbit; spherical variety
UR - http://eudml.org/doc/75390
ER -

References

top
  1. [An82] L.V. ANTONYAN, On classification of homogeneous elements of ℤ2-graded semisimple Lie algebras, Vestnik Mosk. Un-ta, Ser. Matem. & Mech. No. 2 (1982), 29-34 (Russian). English translation: Moscow Univ. Math. Bulletin, 37, No. 2 (1982), 36-43. Zbl0494.17008
  2. [BC76] P. BALA, R.W. CARTER, Classes of unipotent elements in simple algebraic groups, II, Math. Proc. Cambridge Philos. Soc., 80 (1976), 1-18. Zbl0364.22007MR54 #5363b
  3. [CM93] D.H. COLLINGWOOD, W.M. MCGOVERN, Nilpotent orbits in semisimple Lie algebras, New York: Van Nostrand Reinhold, 1993. Zbl0972.17008MR94j:17001
  4. [Dj88] D. DJOKOVIĆ, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Alg., 112 (1988), 503-524. Zbl0639.17005MR89b:17010
  5. [DP65] N.M. DOBROVOLSKAYA, V.A. PONOMAREV, Pairs of counter operators, Uspekhi Matem. Nauk, 20, No. 6 (1965), 81-86 (Russian). Zbl0161.02801
  6. [Dy52] E.B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Matem. Sbornik, 30, No. 2 (1952), 349-462 (Russian). English translation: Amer. Math. Soc. Transl. II, Ser., 6 (1957), 111-244. Zbl0077.03404MR13,904c
  7. [El75] A.G. ELASHVILI, The centralizers of nilpotent elements in semisimple Lie algebras, Trudy Tbiliss. Matem. Inst. Akad. Nauk Gruzin. SSR, 46 (1975), 109-132 (Russian). 
  8. [El85] A.G. ELASHVILI, Frobenius Lie algebras II, Trudy Tbiliss. Matem. Inst. Akad. Nauk Gruzin. SSR, 77 (1985), 127-137 (Russian). Zbl0626.17007MR87m:17022
  9. [FS97] C.K. FAN, J.R. STEMBRIDGE, Nilpotent orbits and commutative elements, J. Algebra, 196 (1997), 490-498. Zbl0915.20019MR98g:20067
  10. [Ka80] V.G. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
  11. [KR71] B. KOSTANT, S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
  12. [KP79] H. KRAFT, C. PROCESI, Closures of conjugacy classes of matrices are normal, Invent. Math., 53 (1979), 227-247. Zbl0434.14026MR80m:14037
  13. [Lu72] D. LUNA, Sur les orbites fermées des groups algèbriques réductifs, Invent. Math., 16 (1972), 1-5. Zbl0249.14016MR45 #3421
  14. [Pa87] D. PANYUSHEV, Orbits of maximal dimension of solvable subgroups of reductive algebraic groups and reduction for U-invariants, Matem. Sb., 132, No. 3 (1987), 371-382 (Russian). English translation: Math. USSR-Sb., 60 (1988), 365-375. Zbl0663.20044
  15. [Pa94] D. PANYUSHEV, Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223-237. Zbl0822.14024MR95e:14039
  16. [Spal] N. SPALTENSTEIN, “Classes Unipotentes et Sous-groups de Borel”, Lecture notes in Math., 946, Berlin Heidelberg New York: Springer 1982. Zbl0486.20025MR84a:14024
  17. [Sp74] T.A. SPRINGER, Regular elements in finite reflection groups, Invent. Math., 25 (1974), 159-198. Zbl0287.20043MR50 #7371
  18. [SpSt] T.A. SPRINGER, R. STEINBERG, Conjugacy classes, In: “Seminar on algebraic groups and related finite groups”. Lecture notes in Math., 131, pp. 167-266, Berlin-Heidelberg-New York, Springer, 1970. Zbl0249.20024MR42 #3091
  19. [Tr83] V.V. TROFIMOV, Semi-invariants of the coadjoint representation of Borel sub-algebras of simple Lie algebras, In: “Trudy seminara po vect. i tenz. analizu”, vol. 21, pp. 84-105. Moscow: MGU 1983 (Russian). English translation: Selecta Math. Sovietica, 8 (1989), 31-56. Zbl0659.17009MR84m:22026
  20. [Vi75] E.B. VINBERG, On the classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR, 225 (1975), No. 4, 745-748 (Russian). English translation: Soviet Math. Dokl., 16 (1975), 1517-1520. Zbl0374.17001MR58 #22194
  21. [Vi76] E.B. VINBERG, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR, Ser. Mat., 40 (1976), No. 3, 488-526 (Russian). English translation: Math USSR-Izv., 10 (1976), 463-495. Zbl0371.20041
  22. [Vi79] E.B. VINBERG, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, In: “Trudy seminara po vect. i tenz. analizu”, vol. 19, pp. 155-177. Moscow: MGU 1979 (Russian). English translation: Selecta Math. Sovietica, 6 (1987), 15-35. Zbl0431.17006MR80k:17006
  23. [Vi86] E.B. VINBERG, Complexity of actions of reductive groups, Funkt. Anal. i Prilozhen, 20, No. 1 (1986), 1-13 (Russian). English translation: Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077
  24. [VP89] E.B. VINBERG, V.L. POPOV, Invariant theory, In: Sovremennye problemy matematiki. Fundamentalnye napravleniya, t. 55, pp. 137-309. Moscow: VINITI 1989 (Russian). English translation in: Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp. 123-284) Berlin-Heidelberg-New York, Springer, 1994. Zbl0789.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.