On spherical nilpotent orbits and beyond
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 5, page 1453-1476
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPanyushev, Dmitri I.. "On spherical nilpotent orbits and beyond." Annales de l'institut Fourier 49.5 (1999): 1453-1476. <http://eudml.org/doc/75390>.
@article{Panyushev1999,
abstract = {We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s $\theta $-groups. This yields a description of spherical nilpotent orbits for the isotropy representation of a symmetric variety.},
author = {Panyushev, Dmitri I.},
journal = {Annales de l'institut Fourier},
keywords = {semisimple Lie algebra; nilpotent orbit; spherical variety},
language = {eng},
number = {5},
pages = {1453-1476},
publisher = {Association des Annales de l'Institut Fourier},
title = {On spherical nilpotent orbits and beyond},
url = {http://eudml.org/doc/75390},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Panyushev, Dmitri I.
TI - On spherical nilpotent orbits and beyond
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1453
EP - 1476
AB - We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s $\theta $-groups. This yields a description of spherical nilpotent orbits for the isotropy representation of a symmetric variety.
LA - eng
KW - semisimple Lie algebra; nilpotent orbit; spherical variety
UR - http://eudml.org/doc/75390
ER -
References
top- [An82] L.V. ANTONYAN, On classification of homogeneous elements of ℤ2-graded semisimple Lie algebras, Vestnik Mosk. Un-ta, Ser. Matem. & Mech. No. 2 (1982), 29-34 (Russian). English translation: Moscow Univ. Math. Bulletin, 37, No. 2 (1982), 36-43. Zbl0494.17008
- [BC76] P. BALA, R.W. CARTER, Classes of unipotent elements in simple algebraic groups, II, Math. Proc. Cambridge Philos. Soc., 80 (1976), 1-18. Zbl0364.22007MR54 #5363b
- [CM93] D.H. COLLINGWOOD, W.M. MCGOVERN, Nilpotent orbits in semisimple Lie algebras, New York: Van Nostrand Reinhold, 1993. Zbl0972.17008MR94j:17001
- [Dj88] D. DJOKOVIĆ, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Alg., 112 (1988), 503-524. Zbl0639.17005MR89b:17010
- [DP65] N.M. DOBROVOLSKAYA, V.A. PONOMAREV, Pairs of counter operators, Uspekhi Matem. Nauk, 20, No. 6 (1965), 81-86 (Russian). Zbl0161.02801
- [Dy52] E.B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Matem. Sbornik, 30, No. 2 (1952), 349-462 (Russian). English translation: Amer. Math. Soc. Transl. II, Ser., 6 (1957), 111-244. Zbl0077.03404MR13,904c
- [El75] A.G. ELASHVILI, The centralizers of nilpotent elements in semisimple Lie algebras, Trudy Tbiliss. Matem. Inst. Akad. Nauk Gruzin. SSR, 46 (1975), 109-132 (Russian).
- [El85] A.G. ELASHVILI, Frobenius Lie algebras II, Trudy Tbiliss. Matem. Inst. Akad. Nauk Gruzin. SSR, 77 (1985), 127-137 (Russian). Zbl0626.17007MR87m:17022
- [FS97] C.K. FAN, J.R. STEMBRIDGE, Nilpotent orbits and commutative elements, J. Algebra, 196 (1997), 490-498. Zbl0915.20019MR98g:20067
- [Ka80] V.G. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
- [KR71] B. KOSTANT, S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
- [KP79] H. KRAFT, C. PROCESI, Closures of conjugacy classes of matrices are normal, Invent. Math., 53 (1979), 227-247. Zbl0434.14026MR80m:14037
- [Lu72] D. LUNA, Sur les orbites fermées des groups algèbriques réductifs, Invent. Math., 16 (1972), 1-5. Zbl0249.14016MR45 #3421
- [Pa87] D. PANYUSHEV, Orbits of maximal dimension of solvable subgroups of reductive algebraic groups and reduction for U-invariants, Matem. Sb., 132, No. 3 (1987), 371-382 (Russian). English translation: Math. USSR-Sb., 60 (1988), 365-375. Zbl0663.20044
- [Pa94] D. PANYUSHEV, Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223-237. Zbl0822.14024MR95e:14039
- [Spal] N. SPALTENSTEIN, “Classes Unipotentes et Sous-groups de Borel”, Lecture notes in Math., 946, Berlin Heidelberg New York: Springer 1982. Zbl0486.20025MR84a:14024
- [Sp74] T.A. SPRINGER, Regular elements in finite reflection groups, Invent. Math., 25 (1974), 159-198. Zbl0287.20043MR50 #7371
- [SpSt] T.A. SPRINGER, R. STEINBERG, Conjugacy classes, In: “Seminar on algebraic groups and related finite groups”. Lecture notes in Math., 131, pp. 167-266, Berlin-Heidelberg-New York, Springer, 1970. Zbl0249.20024MR42 #3091
- [Tr83] V.V. TROFIMOV, Semi-invariants of the coadjoint representation of Borel sub-algebras of simple Lie algebras, In: “Trudy seminara po vect. i tenz. analizu”, vol. 21, pp. 84-105. Moscow: MGU 1983 (Russian). English translation: Selecta Math. Sovietica, 8 (1989), 31-56. Zbl0659.17009MR84m:22026
- [Vi75] E.B. VINBERG, On the classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR, 225 (1975), No. 4, 745-748 (Russian). English translation: Soviet Math. Dokl., 16 (1975), 1517-1520. Zbl0374.17001MR58 #22194
- [Vi76] E.B. VINBERG, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR, Ser. Mat., 40 (1976), No. 3, 488-526 (Russian). English translation: Math USSR-Izv., 10 (1976), 463-495. Zbl0371.20041
- [Vi79] E.B. VINBERG, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, In: “Trudy seminara po vect. i tenz. analizu”, vol. 19, pp. 155-177. Moscow: MGU 1979 (Russian). English translation: Selecta Math. Sovietica, 6 (1987), 15-35. Zbl0431.17006MR80k:17006
- [Vi86] E.B. VINBERG, Complexity of actions of reductive groups, Funkt. Anal. i Prilozhen, 20, No. 1 (1986), 1-13 (Russian). English translation: Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077
- [VP89] E.B. VINBERG, V.L. POPOV, Invariant theory, In: Sovremennye problemy matematiki. Fundamentalnye napravleniya, t. 55, pp. 137-309. Moscow: VINITI 1989 (Russian). English translation in: Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp. 123-284) Berlin-Heidelberg-New York, Springer, 1994. Zbl0789.14008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.