Spherical conjugacy classes and the Bruhat decomposition

Giovanna Carnovale[1]

  • [1] University of Padova Dipartimento di Matematica Pura ed Applicata via Trieste 63 Padova, 35121 (Italy)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2329-2357
  • ISSN: 0373-0956

Abstract

top
Let G be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in G as those intersecting only Bruhat cells in G corresponding to involutions in the Weyl group of  G .

How to cite

top

Carnovale, Giovanna. "Spherical conjugacy classes and the Bruhat decomposition." Annales de l’institut Fourier 59.6 (2009): 2329-2357. <http://eudml.org/doc/10456>.

@article{Carnovale2009,
abstract = {Let $G$ be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in $G$ as those intersecting only Bruhat cells in $G$ corresponding to involutions in the Weyl group of $G$.},
affiliation = {University of Padova Dipartimento di Matematica Pura ed Applicata via Trieste 63 Padova, 35121 (Italy)},
author = {Carnovale, Giovanna},
journal = {Annales de l’institut Fourier},
keywords = {Conjugacy class; spherical homogeneous space; Bruhat decomposition; connected reductive algebraic groups; spherical conjugacy classes; spherical homogeneous spaces; Bruhat decompositions},
language = {eng},
number = {6},
pages = {2329-2357},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical conjugacy classes and the Bruhat decomposition},
url = {http://eudml.org/doc/10456},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Carnovale, Giovanna
TI - Spherical conjugacy classes and the Bruhat decomposition
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2329
EP - 2357
AB - Let $G$ be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in $G$ as those intersecting only Bruhat cells in $G$ corresponding to involutions in the Weyl group of $G$.
LA - eng
KW - Conjugacy class; spherical homogeneous space; Bruhat decomposition; connected reductive algebraic groups; spherical conjugacy classes; spherical homogeneous spaces; Bruhat decompositions
UR - http://eudml.org/doc/10456
ER -

References

top
  1. A. Borel, Linear Algebraic Groups, (1969), W.A. Benjamin, Inc. Zbl0186.33201MR251042
  2. N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chapitres 4,5, et 6, (1981), Masson, Paris Zbl0483.22001MR647314
  3. M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math. 55 (1986), 191-198 Zbl0604.14048MR833243
  4. M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189-208 Zbl0642.14011MR906369
  5. N. Cantarini, G. Carnovale, M. Costantini, Spherical orbits and representations of U e ( 𝔤 ) , Transformation Groups 10 (2005), 29-62 Zbl1101.17006MR2127340
  6. G. Carnovale, Spherical conjugacy classes and involutions in the Weyl group, Math. Z. 260 (2008), 1-23 Zbl1145.14040MR2413339
  7. R. W. Carter, Simple Groups of Lie Type, (1972), Pure and Applied Mathematics XXVIII Zbl0248.20015MR407163
  8. R. W. Carter, Finite Groups of Lie Type, (1985), Pure and Applied Mathematics Zbl0567.20023MR794307
  9. C. De Concini, V. G. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151-190 Zbl0747.17018MR1124981
  10. C. De Concini, V. G. Kac, C. Procesi, Some Quantum Analogues of Solvable Lie Groups, Geometry and Analysis, Tata Institute of Fundamental Research,(Bombay1992) (1995), 41-65 Zbl0878.17014MR1351503
  11. E. Ellers, N. Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math. 214 (2004), 245-261 Zbl1062.20050MR2042932
  12. E. Ellers, N. Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups: the cases SL n ( K ) , GL n ( K ) , J. Pure Appl. Algebra 209 (2007), 703-723 Zbl1128.20034MR2298850
  13. S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335-380 Zbl0913.22011MR1652878
  14. R. Fowler, G. Röhrle, Spherical nilpotent orbits in positive characteristic, Pacific J. Math. 237 (2008), 241-186 Zbl1201.20041MR2421122
  15. F. Grosshans, Contractions of the actions of reductive algebraic groups in arbitrary characteristic, Invent. Math. 107 (1992), 127-133 Zbl0778.20018MR1135467
  16. J. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, (1995), AMS, Providence, Rhode Island Zbl0834.20048MR1343976
  17. F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helvetici 70 (1995), 285-309 Zbl0828.22016MR1324631
  18. D. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), 223-237 Zbl0822.14024MR1277527
  19. D. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier, Grenoble 49 (1999), 1453-1476 Zbl0944.17013MR1723823
  20. T.A. Springer, The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968) (1969), 373-391, Oxford University Press Zbl0195.50803MR263830
  21. T.A. Springer, Some results on algebraic groups with involutions, Algebraic groups and related topics (Kyoto/Nagoya, 1983) 6 (1985), 525-543, Adv. Stud. Pure Math., North-Holland, Amsterdam Zbl0628.20036MR803346
  22. T.A. Springer, Linear Algebraic Groups, Second Edition, 9 (1998), Progress in Mathematics Birkhäuser Zbl0927.20024MR1642713
  23. T.A. Springer, R. Steinberg, Conjugacy classes, Seminar on algebraic groups and related finite groups 131 (1970), 167-266, Springer-Verlag, Berlin Heidelberg New York Zbl0249.20024MR268192
  24. R. Steinberg, Regular elements of semisimple algebraic groups, I.H.E.S. Publ. Math. 25 (1965), 49-80 Zbl0136.30002MR180554
  25. E. Vinberg, Complexity of action of reductive groups, Func. Anal. Appl. 20 (1986), 1-11 Zbl0601.14038MR831043
  26. S-W. Yang, A. Zelevinsky, Cluster algebras of finite type via Coxeter elements and principal minors, Transformation Groups 13 (2008), 855-895 Zbl1177.16010MR2452619

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.