Spherical conjugacy classes and the Bruhat decomposition
- [1] University of Padova Dipartimento di Matematica Pura ed Applicata via Trieste 63 Padova, 35121 (Italy)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2329-2357
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCarnovale, Giovanna. "Spherical conjugacy classes and the Bruhat decomposition." Annales de l’institut Fourier 59.6 (2009): 2329-2357. <http://eudml.org/doc/10456>.
@article{Carnovale2009,
abstract = {Let $G$ be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in $G$ as those intersecting only Bruhat cells in $G$ corresponding to involutions in the Weyl group of $G$.},
affiliation = {University of Padova Dipartimento di Matematica Pura ed Applicata via Trieste 63 Padova, 35121 (Italy)},
author = {Carnovale, Giovanna},
journal = {Annales de l’institut Fourier},
keywords = {Conjugacy class; spherical homogeneous space; Bruhat decomposition; connected reductive algebraic groups; spherical conjugacy classes; spherical homogeneous spaces; Bruhat decompositions},
language = {eng},
number = {6},
pages = {2329-2357},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical conjugacy classes and the Bruhat decomposition},
url = {http://eudml.org/doc/10456},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Carnovale, Giovanna
TI - Spherical conjugacy classes and the Bruhat decomposition
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2329
EP - 2357
AB - Let $G$ be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in $G$ as those intersecting only Bruhat cells in $G$ corresponding to involutions in the Weyl group of $G$.
LA - eng
KW - Conjugacy class; spherical homogeneous space; Bruhat decomposition; connected reductive algebraic groups; spherical conjugacy classes; spherical homogeneous spaces; Bruhat decompositions
UR - http://eudml.org/doc/10456
ER -
References
top- A. Borel, Linear Algebraic Groups, (1969), W.A. Benjamin, Inc. Zbl0186.33201MR251042
- N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chapitres 4,5, et 6, (1981), Masson, Paris Zbl0483.22001MR647314
- M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math. 55 (1986), 191-198 Zbl0604.14048MR833243
- M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189-208 Zbl0642.14011MR906369
- N. Cantarini, G. Carnovale, M. Costantini, Spherical orbits and representations of , Transformation Groups 10 (2005), 29-62 Zbl1101.17006MR2127340
- G. Carnovale, Spherical conjugacy classes and involutions in the Weyl group, Math. Z. 260 (2008), 1-23 Zbl1145.14040MR2413339
- R. W. Carter, Simple Groups of Lie Type, (1972), Pure and Applied Mathematics XXVIII Zbl0248.20015MR407163
- R. W. Carter, Finite Groups of Lie Type, (1985), Pure and Applied Mathematics Zbl0567.20023MR794307
- C. De Concini, V. G. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151-190 Zbl0747.17018MR1124981
- C. De Concini, V. G. Kac, C. Procesi, Some Quantum Analogues of Solvable Lie Groups, Geometry and Analysis, Tata Institute of Fundamental Research,(Bombay1992) (1995), 41-65 Zbl0878.17014MR1351503
- E. Ellers, N. Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math. 214 (2004), 245-261 Zbl1062.20050MR2042932
- E. Ellers, N. Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups: the cases , , J. Pure Appl. Algebra 209 (2007), 703-723 Zbl1128.20034MR2298850
- S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335-380 Zbl0913.22011MR1652878
- R. Fowler, G. Röhrle, Spherical nilpotent orbits in positive characteristic, Pacific J. Math. 237 (2008), 241-186 Zbl1201.20041MR2421122
- F. Grosshans, Contractions of the actions of reductive algebraic groups in arbitrary characteristic, Invent. Math. 107 (1992), 127-133 Zbl0778.20018MR1135467
- J. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, (1995), AMS, Providence, Rhode Island Zbl0834.20048MR1343976
- F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helvetici 70 (1995), 285-309 Zbl0828.22016MR1324631
- D. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), 223-237 Zbl0822.14024MR1277527
- D. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier, Grenoble 49 (1999), 1453-1476 Zbl0944.17013MR1723823
- T.A. Springer, The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968) (1969), 373-391, Oxford University Press Zbl0195.50803MR263830
- T.A. Springer, Some results on algebraic groups with involutions, Algebraic groups and related topics (Kyoto/Nagoya, 1983) 6 (1985), 525-543, Adv. Stud. Pure Math., North-Holland, Amsterdam Zbl0628.20036MR803346
- T.A. Springer, Linear Algebraic Groups, Second Edition, 9 (1998), Progress in Mathematics Birkhäuser Zbl0927.20024MR1642713
- T.A. Springer, R. Steinberg, Conjugacy classes, Seminar on algebraic groups and related finite groups 131 (1970), 167-266, Springer-Verlag, Berlin Heidelberg New York Zbl0249.20024MR268192
- R. Steinberg, Regular elements of semisimple algebraic groups, I.H.E.S. Publ. Math. 25 (1965), 49-80 Zbl0136.30002MR180554
- E. Vinberg, Complexity of action of reductive groups, Func. Anal. Appl. 20 (1986), 1-11 Zbl0601.14038MR831043
- S-W. Yang, A. Zelevinsky, Cluster algebras of finite type via Coxeter elements and principal minors, Transformation Groups 13 (2008), 855-895 Zbl1177.16010MR2452619
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.