Invariant differential operators on the tangent space of some symmetric spaces

Thierry Levasseur; J. Toby Stafford

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 6, page 1711-1741
  • ISSN: 0373-0956

Abstract

top
Let 𝔤 be a complex, semisimple Lie algebra, with an involutive automorphism ϑ and set 𝔨 = Ker ( ϑ - I ) , 𝔭 = Ker ( ϑ + I ) . We consider the differential operators, 𝒟 ( 𝔭 ) K , on 𝔭 that are invariant under the action of the adjoint group K of 𝔨 . Write τ : 𝔨 Der 𝒪 ( 𝔭 ) for the differential of this action. Then we prove, for the class of symmetric pairs ( 𝔤 , 𝔨 ) considered by Sekiguchi, that d 𝒟 ( 𝔭 ) : d 𝒪 ( 𝔭 ) K = 0 = 𝒟 ( 𝔭 ) τ ( 𝔨 ) . An immediate consequence of this equality is the following result of Sekiguchi: Let ( 𝔤 0 , 𝔨 0 ) be a real form of one of these symmetric pairs ( 𝔤 , 𝔨 ) , and suppose that T is a K 0 -invariant eigendistribution on 𝔭 0 that is supported on the singular set. Then, T = 0 . In the diagonal case ( 𝔤 , 𝔨 ) = ( 𝔤 ' 𝔤 ' , 𝔤 ' ) this is a well-known result due to Harish-Chandra.

How to cite

top

Levasseur, Thierry, and Stafford, J. Toby. "Invariant differential operators on the tangent space of some symmetric spaces." Annales de l'institut Fourier 49.6 (1999): 1711-1741. <http://eudml.org/doc/75400>.

@article{Levasseur1999,
abstract = {Let $\{\frak g\}$ be a complex, semisimple Lie algebra, with an involutive automorphism $\vartheta $ and set $\{\frak k\} = \{\rm Ker\}(\vartheta -I)$, $\{\frak p\} = \{\rm Ker\}(\vartheta +I)$. We consider the differential operators, $\{\cal D\}(\{\frak p\})^K$, on $\{\frak p\}$ that are invariant under the action of the adjoint group $K$ of $\{\frak k\}$. Write $\tau : \{\frak k\}\rightarrow \{\rm Der\}\,\{\cal O\}(\{\frak p\})$ for the differential of this action. Then we prove, for the class of symmetric pairs $(\{\frak g\},\{\frak k\})$ considered by Sekiguchi, that $\left\rbrace d \in \{\cal D\}(\{\frak p\}) : d\bigl (\{\cal O\}(\{\frak p\})^K\bigr )=0\right\lbrace = \{\cal D\}(\{\frak p\})\tau (\{\frak k\})$. An immediate consequence of this equality is the following result of Sekiguchi: Let $(\{\frak g\}_0,\{\frak k\}_0)$ be a real form of one of these symmetric pairs $(\{\frak g\},\{\frak k\})$, and suppose that $T$ is a $K_0$-invariant eigendistribution on $\{\frak p\}_0$ that is supported on the singular set. Then, $T=0$. In the diagonal case $(\{\frak g\},\{\frak k\})=(\{\frak g\}^\{\prime \}\oplus \{\frak g\}^\{\prime \}, \{\frak g\}^\{\prime \})$ this is a well-known result due to Harish-Chandra.},
author = {Levasseur, Thierry, Stafford, J. Toby},
journal = {Annales de l'institut Fourier},
keywords = {symmetric space; reductive Lie algebra; invariant differential operator; invariant eigendistribution},
language = {eng},
number = {6},
pages = {1711-1741},
publisher = {Association des Annales de l'Institut Fourier},
title = {Invariant differential operators on the tangent space of some symmetric spaces},
url = {http://eudml.org/doc/75400},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Levasseur, Thierry
AU - Stafford, J. Toby
TI - Invariant differential operators on the tangent space of some symmetric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1711
EP - 1741
AB - Let ${\frak g}$ be a complex, semisimple Lie algebra, with an involutive automorphism $\vartheta $ and set ${\frak k} = {\rm Ker}(\vartheta -I)$, ${\frak p} = {\rm Ker}(\vartheta +I)$. We consider the differential operators, ${\cal D}({\frak p})^K$, on ${\frak p}$ that are invariant under the action of the adjoint group $K$ of ${\frak k}$. Write $\tau : {\frak k}\rightarrow {\rm Der}\,{\cal O}({\frak p})$ for the differential of this action. Then we prove, for the class of symmetric pairs $({\frak g},{\frak k})$ considered by Sekiguchi, that $\left\rbrace d \in {\cal D}({\frak p}) : d\bigl ({\cal O}({\frak p})^K\bigr )=0\right\lbrace = {\cal D}({\frak p})\tau ({\frak k})$. An immediate consequence of this equality is the following result of Sekiguchi: Let $({\frak g}_0,{\frak k}_0)$ be a real form of one of these symmetric pairs $({\frak g},{\frak k})$, and suppose that $T$ is a $K_0$-invariant eigendistribution on ${\frak p}_0$ that is supported on the singular set. Then, $T=0$. In the diagonal case $({\frak g},{\frak k})=({\frak g}^{\prime }\oplus {\frak g}^{\prime }, {\frak g}^{\prime })$ this is a well-known result due to Harish-Chandra.
LA - eng
KW - symmetric space; reductive Lie algebra; invariant differential operator; invariant eigendistribution
UR - http://eudml.org/doc/75400
ER -

References

top
  1. [1] M.F. ATIYAH, Characters of semi-simple Lie groups, (Lectures given in Oxford), Mathematical Institute, Oxford, 1976. 
  2. [2] D. BARBASCH and D.A. VOGAN, The Local Structure of Characters, J. Funct. Anal., 37 (1980), 27-55. Zbl0436.22011MR82e:22024
  3. [3] A. BOREL et al., Algebraic D-modules, Academic Press, Boston, 1987. Zbl0642.32001MR89g:32014
  4. [4] W. BORHO and H. KRAFT, Über die Gelfand-Kirillov Dimension, Math. Annalen, 220 (1976), 1-24. MR54 #367
  5. [5] J. DADOK, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288 (1985), 125-137. Zbl0565.22010MR86k:22019
  6. [6] O. GABBER, The integrability of the characteristic variety, Amer. J. Math, 103 (1981), 445-468. Zbl0492.16002MR82j:58104
  7. [7] HARISH-CHANDRA, Invariant distributions on Lie algebras, Amer. J. Math., 86 (1964), 271-309. Zbl0131.33302MR28 #5144
  8. [8] HARISH-CHANDRA, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math., 86 (1964), 534-564. Zbl0161.33804MR31 #4862a
  9. [9] HARISH-CHANDRA, Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 5-54. Zbl0199.46401MR31 #4862c
  10. [10] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038
  11. [11] S. HELGASON, Groups and Geometric Analysis, Academic Press, 1984. 
  12. [12] R. HOTTA, Introduction to D-modules, (Lectures at the Inst. Math. Sci., Madras), Math. Institute, Tohoku University, Sendai, 1986. 
  13. [13] R. HOTTA and M. KASHIWARA, The invariant holonomic system on a semisimple Lie algebra, Invent. Math., 75 (1984), 327-358. Zbl0538.22013MR87i:22041
  14. [14] A. JOSEPH, Quantum groups and their primitive ideals, Springer-Verlag, Berlin-New York, 1995. Zbl0808.17004MR96d:17015
  15. [15] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
  16. [16] A. KOWATA, Spherical hyperfunctions on the tangent space of symmetric spaces, Hiroshima Math. J., 21 (1991), 401-418. Zbl0725.32009MR92h:43021
  17. [17] T. LEVASSEUR and J.T. STAFFORD, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365-372. Zbl0837.22011MR95g:22029
  18. [18] T. LEVASSEUR and J.T. STAFFORD, The kernel of an homomorphism of Harish-Chandra, Ann. Scient. Éc. Norm. Sup., 29 (1996), 385-397. Zbl0859.22010MR97b:22019
  19. [19] T. LEVASSEUR and J.T. STAFFORD, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., 119 (1997), 1095-1117. Zbl0882.22011MR99g:17020
  20. [20] T. LEVASSEUR and R. USHIROBIRA, Adjoint vector fields on the tangent space of semisimple symmetric spaces, J. of Lie Theory, to appear. Zbl1032.17014
  21. [21] M. LORENZ, Gelfand-Kirillov dimension and Poincaré series, Cuadernos de Algebra 7, Universidad de Granada, 1988. Zbl0662.16002
  22. [22] J.C. MCCONNELL and J.C. ROBSON, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. Zbl0644.16008MR89j:16023
  23. [23] J.C. MCCONNELL and J.T. STAFFORD, Gelfand-Kirillov dimension and associated graded modules, J. Algebra, 125 (1989), 197-214. Zbl0688.16030MR90i:16002
  24. [24] J.S. MILNE, Étale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR81j:14002
  25. [25] M. NOUMI, Regular Holonomic Systems and their Minimal Extensions I, in "Group Representations and Systems of Differential Equations", Advanced Studies in Pure Mathematics, 4 (1984), 209-221. Zbl0593.22012MR87c:58116a
  26. [26] H. OCHIAI, Invariant functions on the tangent space of a rank one semisimple symmetric space, J. Fac. Sci. Univ. Tokyo, 39 (1992), 17-31. Zbl0783.22004MR93c:53039
  27. [27] D.I. PANYUSHEV, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., 94 (1994), 181-199. Zbl0834.17003MR95m:14030
  28. [28] V.L. POPOV and E.B. VINBERG, Invariant Theory, in "Algebraic Geometry IV", (Eds: A.N. Parshin and I.R. Shafarevich), Springer-Verlag, Berlin, Heidelberg, New York, 1991. 
  29. [29] R.W. RICHARDSON, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke J. Math., 57 (1988), 1-35. Zbl0685.20035MR89h:20061
  30. [30] G.W. SCHWARZ, Differential operators on quotients of simple groups, J. Algebra, 169 (1994), 248-273. Zbl0835.14019MR95i:16027
  31. [31] G.W. SCHWARZ, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup., 28 (1995), 253-306. Zbl0836.14032MR96f:14061
  32. [32] J. SEKIGUCHI, The Nilpotent Subvariety of the Vector Space Associated to a Symmetric Pair, Publ. RIMS, Kyoto Univ., 20 (1984), 155-212. Zbl0556.14022MR85d:14066
  33. [33] J. SEKIGUCHI, Invariant Spherical Hyperfunctions on the Tangent Space of a Symmetric Space, in "Algebraic Groups and Related Topics", Advanced Studies in Pure Mathematics, 6 (1985), 83-126. Zbl0578.22011MR87m:22026
  34. [34] P. SLODOWY, Simple singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer-Verlag, Berlin-New York, 1980. Zbl0441.14002MR82g:14037
  35. [35] M. VAN den BERGH, Some rings of differential operators for Sl2-invariants are simple, J. Pure and Applied Algebra, 107 (1996), 309-335. Zbl0871.16014MR97c:16032
  36. [36] V.S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Part I, Lecture Notes in Mathematics 576, Springer-Verlag, Berlin-New York, 1977. Zbl0354.43001MR57 #12789
  37. [37] E.B. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR Izvestija, 10 (1976), 463-495. Zbl0371.20041MR55 #3175
  38. [38] N. WALLACH, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816. Zbl0804.22004MR94a:17014
  39. [39] H. WEYL, The Classical Groups, Princeton University Press, Princeton, 1939. Zbl65.0058.02JFM65.0058.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.