Invariant differential operators on the tangent space of some symmetric spaces
Thierry Levasseur; J. Toby Stafford
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 6, page 1711-1741
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLevasseur, Thierry, and Stafford, J. Toby. "Invariant differential operators on the tangent space of some symmetric spaces." Annales de l'institut Fourier 49.6 (1999): 1711-1741. <http://eudml.org/doc/75400>.
@article{Levasseur1999,
abstract = {Let $\{\frak g\}$ be a complex, semisimple Lie algebra, with an involutive automorphism $\vartheta $ and set $\{\frak k\} = \{\rm Ker\}(\vartheta -I)$, $\{\frak p\} = \{\rm Ker\}(\vartheta +I)$. We consider the differential operators, $\{\cal D\}(\{\frak p\})^K$, on $\{\frak p\}$ that are invariant under the action of the adjoint group $K$ of $\{\frak k\}$. Write $\tau : \{\frak k\}\rightarrow \{\rm Der\}\,\{\cal O\}(\{\frak p\})$ for the differential of this action. Then we prove, for the class of symmetric pairs $(\{\frak g\},\{\frak k\})$ considered by Sekiguchi, that $\left\rbrace d \in \{\cal D\}(\{\frak p\}) : d\bigl (\{\cal O\}(\{\frak p\})^K\bigr )=0\right\lbrace = \{\cal D\}(\{\frak p\})\tau (\{\frak k\})$. An immediate consequence of this equality is the following result of Sekiguchi: Let $(\{\frak g\}_0,\{\frak k\}_0)$ be a real form of one of these symmetric pairs $(\{\frak g\},\{\frak k\})$, and suppose that $T$ is a $K_0$-invariant eigendistribution on $\{\frak p\}_0$ that is supported on the singular set. Then, $T=0$. In the diagonal case $(\{\frak g\},\{\frak k\})=(\{\frak g\}^\{\prime \}\oplus \{\frak g\}^\{\prime \}, \{\frak g\}^\{\prime \})$ this is a well-known result due to Harish-Chandra.},
author = {Levasseur, Thierry, Stafford, J. Toby},
journal = {Annales de l'institut Fourier},
keywords = {symmetric space; reductive Lie algebra; invariant differential operator; invariant eigendistribution},
language = {eng},
number = {6},
pages = {1711-1741},
publisher = {Association des Annales de l'Institut Fourier},
title = {Invariant differential operators on the tangent space of some symmetric spaces},
url = {http://eudml.org/doc/75400},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Levasseur, Thierry
AU - Stafford, J. Toby
TI - Invariant differential operators on the tangent space of some symmetric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1711
EP - 1741
AB - Let ${\frak g}$ be a complex, semisimple Lie algebra, with an involutive automorphism $\vartheta $ and set ${\frak k} = {\rm Ker}(\vartheta -I)$, ${\frak p} = {\rm Ker}(\vartheta +I)$. We consider the differential operators, ${\cal D}({\frak p})^K$, on ${\frak p}$ that are invariant under the action of the adjoint group $K$ of ${\frak k}$. Write $\tau : {\frak k}\rightarrow {\rm Der}\,{\cal O}({\frak p})$ for the differential of this action. Then we prove, for the class of symmetric pairs $({\frak g},{\frak k})$ considered by Sekiguchi, that $\left\rbrace d \in {\cal D}({\frak p}) : d\bigl ({\cal O}({\frak p})^K\bigr )=0\right\lbrace = {\cal D}({\frak p})\tau ({\frak k})$. An immediate consequence of this equality is the following result of Sekiguchi: Let $({\frak g}_0,{\frak k}_0)$ be a real form of one of these symmetric pairs $({\frak g},{\frak k})$, and suppose that $T$ is a $K_0$-invariant eigendistribution on ${\frak p}_0$ that is supported on the singular set. Then, $T=0$. In the diagonal case $({\frak g},{\frak k})=({\frak g}^{\prime }\oplus {\frak g}^{\prime }, {\frak g}^{\prime })$ this is a well-known result due to Harish-Chandra.
LA - eng
KW - symmetric space; reductive Lie algebra; invariant differential operator; invariant eigendistribution
UR - http://eudml.org/doc/75400
ER -
References
top- [1] M.F. ATIYAH, Characters of semi-simple Lie groups, (Lectures given in Oxford), Mathematical Institute, Oxford, 1976.
- [2] D. BARBASCH and D.A. VOGAN, The Local Structure of Characters, J. Funct. Anal., 37 (1980), 27-55. Zbl0436.22011MR82e:22024
- [3] A. BOREL et al., Algebraic D-modules, Academic Press, Boston, 1987. Zbl0642.32001MR89g:32014
- [4] W. BORHO and H. KRAFT, Über die Gelfand-Kirillov Dimension, Math. Annalen, 220 (1976), 1-24. MR54 #367
- [5] J. DADOK, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288 (1985), 125-137. Zbl0565.22010MR86k:22019
- [6] O. GABBER, The integrability of the characteristic variety, Amer. J. Math, 103 (1981), 445-468. Zbl0492.16002MR82j:58104
- [7] HARISH-CHANDRA, Invariant distributions on Lie algebras, Amer. J. Math., 86 (1964), 271-309. Zbl0131.33302MR28 #5144
- [8] HARISH-CHANDRA, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math., 86 (1964), 534-564. Zbl0161.33804MR31 #4862a
- [9] HARISH-CHANDRA, Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 5-54. Zbl0199.46401MR31 #4862c
- [10] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038
- [11] S. HELGASON, Groups and Geometric Analysis, Academic Press, 1984.
- [12] R. HOTTA, Introduction to D-modules, (Lectures at the Inst. Math. Sci., Madras), Math. Institute, Tohoku University, Sendai, 1986.
- [13] R. HOTTA and M. KASHIWARA, The invariant holonomic system on a semisimple Lie algebra, Invent. Math., 75 (1984), 327-358. Zbl0538.22013MR87i:22041
- [14] A. JOSEPH, Quantum groups and their primitive ideals, Springer-Verlag, Berlin-New York, 1995. Zbl0808.17004MR96d:17015
- [15] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
- [16] A. KOWATA, Spherical hyperfunctions on the tangent space of symmetric spaces, Hiroshima Math. J., 21 (1991), 401-418. Zbl0725.32009MR92h:43021
- [17] T. LEVASSEUR and J.T. STAFFORD, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365-372. Zbl0837.22011MR95g:22029
- [18] T. LEVASSEUR and J.T. STAFFORD, The kernel of an homomorphism of Harish-Chandra, Ann. Scient. Éc. Norm. Sup., 29 (1996), 385-397. Zbl0859.22010MR97b:22019
- [19] T. LEVASSEUR and J.T. STAFFORD, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., 119 (1997), 1095-1117. Zbl0882.22011MR99g:17020
- [20] T. LEVASSEUR and R. USHIROBIRA, Adjoint vector fields on the tangent space of semisimple symmetric spaces, J. of Lie Theory, to appear. Zbl1032.17014
- [21] M. LORENZ, Gelfand-Kirillov dimension and Poincaré series, Cuadernos de Algebra 7, Universidad de Granada, 1988. Zbl0662.16002
- [22] J.C. MCCONNELL and J.C. ROBSON, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. Zbl0644.16008MR89j:16023
- [23] J.C. MCCONNELL and J.T. STAFFORD, Gelfand-Kirillov dimension and associated graded modules, J. Algebra, 125 (1989), 197-214. Zbl0688.16030MR90i:16002
- [24] J.S. MILNE, Étale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR81j:14002
- [25] M. NOUMI, Regular Holonomic Systems and their Minimal Extensions I, in "Group Representations and Systems of Differential Equations", Advanced Studies in Pure Mathematics, 4 (1984), 209-221. Zbl0593.22012MR87c:58116a
- [26] H. OCHIAI, Invariant functions on the tangent space of a rank one semisimple symmetric space, J. Fac. Sci. Univ. Tokyo, 39 (1992), 17-31. Zbl0783.22004MR93c:53039
- [27] D.I. PANYUSHEV, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., 94 (1994), 181-199. Zbl0834.17003MR95m:14030
- [28] V.L. POPOV and E.B. VINBERG, Invariant Theory, in "Algebraic Geometry IV", (Eds: A.N. Parshin and I.R. Shafarevich), Springer-Verlag, Berlin, Heidelberg, New York, 1991.
- [29] R.W. RICHARDSON, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke J. Math., 57 (1988), 1-35. Zbl0685.20035MR89h:20061
- [30] G.W. SCHWARZ, Differential operators on quotients of simple groups, J. Algebra, 169 (1994), 248-273. Zbl0835.14019MR95i:16027
- [31] G.W. SCHWARZ, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup., 28 (1995), 253-306. Zbl0836.14032MR96f:14061
- [32] J. SEKIGUCHI, The Nilpotent Subvariety of the Vector Space Associated to a Symmetric Pair, Publ. RIMS, Kyoto Univ., 20 (1984), 155-212. Zbl0556.14022MR85d:14066
- [33] J. SEKIGUCHI, Invariant Spherical Hyperfunctions on the Tangent Space of a Symmetric Space, in "Algebraic Groups and Related Topics", Advanced Studies in Pure Mathematics, 6 (1985), 83-126. Zbl0578.22011MR87m:22026
- [34] P. SLODOWY, Simple singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer-Verlag, Berlin-New York, 1980. Zbl0441.14002MR82g:14037
- [35] M. VAN den BERGH, Some rings of differential operators for Sl2-invariants are simple, J. Pure and Applied Algebra, 107 (1996), 309-335. Zbl0871.16014MR97c:16032
- [36] V.S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Part I, Lecture Notes in Mathematics 576, Springer-Verlag, Berlin-New York, 1977. Zbl0354.43001MR57 #12789
- [37] E.B. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR Izvestija, 10 (1976), 463-495. Zbl0371.20041MR55 #3175
- [38] N. WALLACH, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816. Zbl0804.22004MR94a:17014
- [39] H. WEYL, The Classical Groups, Princeton University Press, Princeton, 1939. Zbl65.0058.02JFM65.0058.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.