Invariant differential operators on the tangent space of some symmetric spaces

Thierry Levasseur; J. Toby Stafford

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 6, page 1711-1741
  • ISSN: 0373-0956

Abstract

top
Let 𝔤 be a complex, semisimple Lie algebra, with an involutive automorphism ϑ and set 𝔨 = Ker ( ϑ - I ) , 𝔭 = Ker ( ϑ + I ) . We consider the differential operators, 𝒟 ( 𝔭 ) K , on 𝔭 that are invariant under the action of the adjoint group K of 𝔨 . Write τ : 𝔨 Der 𝒪 ( 𝔭 ) for the differential of this action. Then we prove, for the class of symmetric pairs ( 𝔤 , 𝔨 ) considered by Sekiguchi, that d 𝒟 ( 𝔭 ) : d 𝒪 ( 𝔭 ) K = 0 = 𝒟 ( 𝔭 ) τ ( 𝔨 ) . An immediate consequence of this equality is the following result of Sekiguchi: Let ( 𝔤 0 , 𝔨 0 ) be a real form of one of these symmetric pairs ( 𝔤 , 𝔨 ) , and suppose that T is a K 0 -invariant eigendistribution on 𝔭 0 that is supported on the singular set. Then, T = 0 . In the diagonal case ( 𝔤 , 𝔨 ) = ( 𝔤 ' 𝔤 ' , 𝔤 ' ) this is a well-known result due to Harish-Chandra.

How to cite

top

Levasseur, Thierry, and Stafford, J. Toby. "Invariant differential operators on the tangent space of some symmetric spaces." Annales de l'institut Fourier 49.6 (1999): 1711-1741. <http://eudml.org/doc/75400>.

@article{Levasseur1999,
abstract = {Let $\{\frak g\}$ be a complex, semisimple Lie algebra, with an involutive automorphism $\vartheta $ and set $\{\frak k\} = \{\rm Ker\}(\vartheta -I)$, $\{\frak p\} = \{\rm Ker\}(\vartheta +I)$. We consider the differential operators, $\{\cal D\}(\{\frak p\})^K$, on $\{\frak p\}$ that are invariant under the action of the adjoint group $K$ of $\{\frak k\}$. Write $\tau : \{\frak k\}\rightarrow \{\rm Der\}\,\{\cal O\}(\{\frak p\})$ for the differential of this action. Then we prove, for the class of symmetric pairs $(\{\frak g\},\{\frak k\})$ considered by Sekiguchi, that $\left\rbrace d \in \{\cal D\}(\{\frak p\}) : d\bigl (\{\cal O\}(\{\frak p\})^K\bigr )=0\right\lbrace = \{\cal D\}(\{\frak p\})\tau (\{\frak k\})$. An immediate consequence of this equality is the following result of Sekiguchi: Let $(\{\frak g\}_0,\{\frak k\}_0)$ be a real form of one of these symmetric pairs $(\{\frak g\},\{\frak k\})$, and suppose that $T$ is a $K_0$-invariant eigendistribution on $\{\frak p\}_0$ that is supported on the singular set. Then, $T=0$. In the diagonal case $(\{\frak g\},\{\frak k\})=(\{\frak g\}^\{\prime \}\oplus \{\frak g\}^\{\prime \}, \{\frak g\}^\{\prime \})$ this is a well-known result due to Harish-Chandra.},
author = {Levasseur, Thierry, Stafford, J. Toby},
journal = {Annales de l'institut Fourier},
keywords = {symmetric space; reductive Lie algebra; invariant differential operator; invariant eigendistribution},
language = {eng},
number = {6},
pages = {1711-1741},
publisher = {Association des Annales de l'Institut Fourier},
title = {Invariant differential operators on the tangent space of some symmetric spaces},
url = {http://eudml.org/doc/75400},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Levasseur, Thierry
AU - Stafford, J. Toby
TI - Invariant differential operators on the tangent space of some symmetric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1711
EP - 1741
AB - Let ${\frak g}$ be a complex, semisimple Lie algebra, with an involutive automorphism $\vartheta $ and set ${\frak k} = {\rm Ker}(\vartheta -I)$, ${\frak p} = {\rm Ker}(\vartheta +I)$. We consider the differential operators, ${\cal D}({\frak p})^K$, on ${\frak p}$ that are invariant under the action of the adjoint group $K$ of ${\frak k}$. Write $\tau : {\frak k}\rightarrow {\rm Der}\,{\cal O}({\frak p})$ for the differential of this action. Then we prove, for the class of symmetric pairs $({\frak g},{\frak k})$ considered by Sekiguchi, that $\left\rbrace d \in {\cal D}({\frak p}) : d\bigl ({\cal O}({\frak p})^K\bigr )=0\right\lbrace = {\cal D}({\frak p})\tau ({\frak k})$. An immediate consequence of this equality is the following result of Sekiguchi: Let $({\frak g}_0,{\frak k}_0)$ be a real form of one of these symmetric pairs $({\frak g},{\frak k})$, and suppose that $T$ is a $K_0$-invariant eigendistribution on ${\frak p}_0$ that is supported on the singular set. Then, $T=0$. In the diagonal case $({\frak g},{\frak k})=({\frak g}^{\prime }\oplus {\frak g}^{\prime }, {\frak g}^{\prime })$ this is a well-known result due to Harish-Chandra.
LA - eng
KW - symmetric space; reductive Lie algebra; invariant differential operator; invariant eigendistribution
UR - http://eudml.org/doc/75400
ER -

References

top
  1. [1] M.F. ATIYAH, Characters of semi-simple Lie groups, (Lectures given in Oxford), Mathematical Institute, Oxford, 1976. 
  2. [2] D. BARBASCH and D.A. VOGAN, The Local Structure of Characters, J. Funct. Anal., 37 (1980), 27-55. Zbl0436.22011MR82e:22024
  3. [3] A. BOREL et al., Algebraic D-modules, Academic Press, Boston, 1987. Zbl0642.32001MR89g:32014
  4. [4] W. BORHO and H. KRAFT, Über die Gelfand-Kirillov Dimension, Math. Annalen, 220 (1976), 1-24. MR54 #367
  5. [5] J. DADOK, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288 (1985), 125-137. Zbl0565.22010MR86k:22019
  6. [6] O. GABBER, The integrability of the characteristic variety, Amer. J. Math, 103 (1981), 445-468. Zbl0492.16002MR82j:58104
  7. [7] HARISH-CHANDRA, Invariant distributions on Lie algebras, Amer. J. Math., 86 (1964), 271-309. Zbl0131.33302MR28 #5144
  8. [8] HARISH-CHANDRA, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math., 86 (1964), 534-564. Zbl0161.33804MR31 #4862a
  9. [9] HARISH-CHANDRA, Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 5-54. Zbl0199.46401MR31 #4862c
  10. [10] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038
  11. [11] S. HELGASON, Groups and Geometric Analysis, Academic Press, 1984. 
  12. [12] R. HOTTA, Introduction to D-modules, (Lectures at the Inst. Math. Sci., Madras), Math. Institute, Tohoku University, Sendai, 1986. 
  13. [13] R. HOTTA and M. KASHIWARA, The invariant holonomic system on a semisimple Lie algebra, Invent. Math., 75 (1984), 327-358. Zbl0538.22013MR87i:22041
  14. [14] A. JOSEPH, Quantum groups and their primitive ideals, Springer-Verlag, Berlin-New York, 1995. Zbl0808.17004MR96d:17015
  15. [15] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
  16. [16] A. KOWATA, Spherical hyperfunctions on the tangent space of symmetric spaces, Hiroshima Math. J., 21 (1991), 401-418. Zbl0725.32009MR92h:43021
  17. [17] T. LEVASSEUR and J.T. STAFFORD, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365-372. Zbl0837.22011MR95g:22029
  18. [18] T. LEVASSEUR and J.T. STAFFORD, The kernel of an homomorphism of Harish-Chandra, Ann. Scient. Éc. Norm. Sup., 29 (1996), 385-397. Zbl0859.22010MR97b:22019
  19. [19] T. LEVASSEUR and J.T. STAFFORD, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., 119 (1997), 1095-1117. Zbl0882.22011MR99g:17020
  20. [20] T. LEVASSEUR and R. USHIROBIRA, Adjoint vector fields on the tangent space of semisimple symmetric spaces, J. of Lie Theory, to appear. Zbl1032.17014
  21. [21] M. LORENZ, Gelfand-Kirillov dimension and Poincaré series, Cuadernos de Algebra 7, Universidad de Granada, 1988. Zbl0662.16002
  22. [22] J.C. MCCONNELL and J.C. ROBSON, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. Zbl0644.16008MR89j:16023
  23. [23] J.C. MCCONNELL and J.T. STAFFORD, Gelfand-Kirillov dimension and associated graded modules, J. Algebra, 125 (1989), 197-214. Zbl0688.16030MR90i:16002
  24. [24] J.S. MILNE, Étale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR81j:14002
  25. [25] M. NOUMI, Regular Holonomic Systems and their Minimal Extensions I, in "Group Representations and Systems of Differential Equations", Advanced Studies in Pure Mathematics, 4 (1984), 209-221. Zbl0593.22012MR87c:58116a
  26. [26] H. OCHIAI, Invariant functions on the tangent space of a rank one semisimple symmetric space, J. Fac. Sci. Univ. Tokyo, 39 (1992), 17-31. Zbl0783.22004MR93c:53039
  27. [27] D.I. PANYUSHEV, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., 94 (1994), 181-199. Zbl0834.17003MR95m:14030
  28. [28] V.L. POPOV and E.B. VINBERG, Invariant Theory, in "Algebraic Geometry IV", (Eds: A.N. Parshin and I.R. Shafarevich), Springer-Verlag, Berlin, Heidelberg, New York, 1991. 
  29. [29] R.W. RICHARDSON, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke J. Math., 57 (1988), 1-35. Zbl0685.20035MR89h:20061
  30. [30] G.W. SCHWARZ, Differential operators on quotients of simple groups, J. Algebra, 169 (1994), 248-273. Zbl0835.14019MR95i:16027
  31. [31] G.W. SCHWARZ, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup., 28 (1995), 253-306. Zbl0836.14032MR96f:14061
  32. [32] J. SEKIGUCHI, The Nilpotent Subvariety of the Vector Space Associated to a Symmetric Pair, Publ. RIMS, Kyoto Univ., 20 (1984), 155-212. Zbl0556.14022MR85d:14066
  33. [33] J. SEKIGUCHI, Invariant Spherical Hyperfunctions on the Tangent Space of a Symmetric Space, in "Algebraic Groups and Related Topics", Advanced Studies in Pure Mathematics, 6 (1985), 83-126. Zbl0578.22011MR87m:22026
  34. [34] P. SLODOWY, Simple singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer-Verlag, Berlin-New York, 1980. Zbl0441.14002MR82g:14037
  35. [35] M. VAN den BERGH, Some rings of differential operators for Sl2-invariants are simple, J. Pure and Applied Algebra, 107 (1996), 309-335. Zbl0871.16014MR97c:16032
  36. [36] V.S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Part I, Lecture Notes in Mathematics 576, Springer-Verlag, Berlin-New York, 1977. Zbl0354.43001MR57 #12789
  37. [37] E.B. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR Izvestija, 10 (1976), 463-495. Zbl0371.20041MR55 #3175
  38. [38] N. WALLACH, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816. Zbl0804.22004MR94a:17014
  39. [39] H. WEYL, The Classical Groups, Princeton University Press, Princeton, 1939. Zbl65.0058.02JFM65.0058.02

NotesEmbed ?

top

You must be logged in to post comments.