The kernel of an homomorphism of Harish-Chandra

T. Levasseur; J. T. Stafford

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 3, page 385-397
  • ISSN: 0012-9593

How to cite

top

Levasseur, T., and Stafford, J. T.. "The kernel of an homomorphism of Harish-Chandra." Annales scientifiques de l'École Normale Supérieure 29.3 (1996): 385-397. <http://eudml.org/doc/82412>.

@article{Levasseur1996,
author = {Levasseur, T., Stafford, J. T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Lie algebra; Weyl group; differential operators; representation; reductive groups},
language = {eng},
number = {3},
pages = {385-397},
publisher = {Elsevier},
title = {The kernel of an homomorphism of Harish-Chandra},
url = {http://eudml.org/doc/82412},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Levasseur, T.
AU - Stafford, J. T.
TI - The kernel of an homomorphism of Harish-Chandra
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 3
SP - 385
EP - 397
LA - eng
KW - Lie algebra; Weyl group; differential operators; representation; reductive groups
UR - http://eudml.org/doc/82412
ER -

References

top
  1. [1] J.-E. BJÖRK, Rings of Differential Operators, North Holland, Amsterdam, 1979. Zbl0499.13009
  2. [2] A. BOREL et al., Algebraic D-modules, Academic Press, Boston, 1987. Zbl0642.32001MR89g:32014
  3. [3] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, 1956. Zbl0075.24305MR17,1040e
  4. [4] J. DIXMIER, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simple (J. Reine Angew. Math., Vol. 309, 1979, pp. 183-190). Zbl0409.22009MR80i:17011
  5. [5] K. R. GOODEARL and R. B. WARFIELD, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989. Zbl0679.16001
  6. [6] HARISH-CHANDRA, Invariant distributions on Lie algebras (Amer. J. Math., Vol. 86, 1964, pp. 271-309). Zbl0131.33302MR28 #5144
  7. [7] HARISH-CHANDRA, Invariant differential operators and distributions on a semi-simple Lie algebra (Amer. J. Math., Vol. 86, 1964, pp. 534-564). Zbl0161.33804MR31 #4862a
  8. [8] HARISH-CHANDRA, Invariant eigendistributions on a semi-simple Lie algebra (Inst. Hautes Etudes Sci. Publ. Math., Vol. 27, 1965, pp. 5-54). Zbl0199.46401MR31 #4862c
  9. [9] L. HÖRMANDER, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1979. 
  10. [10] R. HOTTA and M. KASHIWARA, The invariant holonomic system on a semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). Zbl0538.22013MR87i:22041
  11. [11] A. JOSEPH, A generalization of Quillen's Lemma and its applications to the Weyl algebras (Israel J. Math., Vol. 28, 1977, pp. 177-192). Zbl0366.17006MR58 #28097
  12. [12] M. KASHIWARA, The Invariant Holonomic System on a Semisimple Lie Group (in “Algebraic Analysis” dedicated to M. Sato, Vol. 1, 1988, pp. 277-286, Academic Press). Zbl0704.22008MR90k:22021
  13. [13] B. KOSTANT, Lie group representations on polynomial rings (Amer. J. Math., Vol. 85, 1963, pp. 327-404). Zbl0124.26802MR28 #1252
  14. [14] T. LEVASSEUR and J. T. STAFFORD, Invariant differential operators and an homomorphism of Harish-Chandra (J. Amer. Math. Soc., Vol. 8, 1995, pp. 365-372). Zbl0837.22011MR95g:22029
  15. [15] J. C. MCCONNELL and J. C. ROBSON, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. Zbl0644.16008MR89j:16023
  16. [16] S. MONTGOMERY, Fixed Rings of Finite Automorphism Groups of Associative Rings (Lecture Notes in Mathematics, Vol. 818, Springer-Verlag, Berlin/New York, 1980). Zbl0449.16001MR81j:16041
  17. [17] R. W. RICHARDSON, Commuting varieties of semisimple Lie algebras and algebraic groups (Compositio Math., Vol. 38, 1979, pp. 311-322). Zbl0409.17006MR80c:17009
  18. [18] G. W. SCHWARZ, Lifting differential operators from orbit spaces (Ann. Sci. Ecole Norm. Sup., Vol. 28, 1995, pp. 253-306). Zbl0836.14032MR96f:14061
  19. [19] G. W. SCHWARZ, Invariant differential operators (Proceedings of the 1994 International Congress of Mathematics, to appear). Zbl0857.13025
  20. [20] V. S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Part I (Lecture Notes in Mathematics Vol. 576, Springer-Verlag, Berlin/New York, 1977). Zbl0354.43001MR57 #12789
  21. [21] N. WALLACH, Invariant differential operators on a reductive Lie algebra and Weyl group representations (J. Amer. Math. Soc., Vol. 6, 1993, pp. 779-816). Zbl0804.22004MR94a:17014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.