The kernel of an homomorphism of Harish-Chandra

T. Levasseur; J. T. Stafford

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 3, page 385-397
  • ISSN: 0012-9593

How to cite

top

Levasseur, T., and Stafford, J. T.. "The kernel of an homomorphism of Harish-Chandra." Annales scientifiques de l'École Normale Supérieure 29.3 (1996): 385-397. <http://eudml.org/doc/82412>.

@article{Levasseur1996,
author = {Levasseur, T., Stafford, J. T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Lie algebra; Weyl group; differential operators; representation; reductive groups},
language = {eng},
number = {3},
pages = {385-397},
publisher = {Elsevier},
title = {The kernel of an homomorphism of Harish-Chandra},
url = {http://eudml.org/doc/82412},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Levasseur, T.
AU - Stafford, J. T.
TI - The kernel of an homomorphism of Harish-Chandra
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 3
SP - 385
EP - 397
LA - eng
KW - Lie algebra; Weyl group; differential operators; representation; reductive groups
UR - http://eudml.org/doc/82412
ER -

References

top
  1. [1] J.-E. BJÖRK, Rings of Differential Operators, North Holland, Amsterdam, 1979. Zbl0499.13009
  2. [2] A. BOREL et al., Algebraic D-modules, Academic Press, Boston, 1987. Zbl0642.32001MR89g:32014
  3. [3] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, 1956. Zbl0075.24305MR17,1040e
  4. [4] J. DIXMIER, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simple (J. Reine Angew. Math., Vol. 309, 1979, pp. 183-190). Zbl0409.22009MR80i:17011
  5. [5] K. R. GOODEARL and R. B. WARFIELD, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989. Zbl0679.16001
  6. [6] HARISH-CHANDRA, Invariant distributions on Lie algebras (Amer. J. Math., Vol. 86, 1964, pp. 271-309). Zbl0131.33302MR28 #5144
  7. [7] HARISH-CHANDRA, Invariant differential operators and distributions on a semi-simple Lie algebra (Amer. J. Math., Vol. 86, 1964, pp. 534-564). Zbl0161.33804MR31 #4862a
  8. [8] HARISH-CHANDRA, Invariant eigendistributions on a semi-simple Lie algebra (Inst. Hautes Etudes Sci. Publ. Math., Vol. 27, 1965, pp. 5-54). Zbl0199.46401MR31 #4862c
  9. [9] L. HÖRMANDER, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1979. 
  10. [10] R. HOTTA and M. KASHIWARA, The invariant holonomic system on a semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). Zbl0538.22013MR87i:22041
  11. [11] A. JOSEPH, A generalization of Quillen's Lemma and its applications to the Weyl algebras (Israel J. Math., Vol. 28, 1977, pp. 177-192). Zbl0366.17006MR58 #28097
  12. [12] M. KASHIWARA, The Invariant Holonomic System on a Semisimple Lie Group (in “Algebraic Analysis” dedicated to M. Sato, Vol. 1, 1988, pp. 277-286, Academic Press). Zbl0704.22008MR90k:22021
  13. [13] B. KOSTANT, Lie group representations on polynomial rings (Amer. J. Math., Vol. 85, 1963, pp. 327-404). Zbl0124.26802MR28 #1252
  14. [14] T. LEVASSEUR and J. T. STAFFORD, Invariant differential operators and an homomorphism of Harish-Chandra (J. Amer. Math. Soc., Vol. 8, 1995, pp. 365-372). Zbl0837.22011MR95g:22029
  15. [15] J. C. MCCONNELL and J. C. ROBSON, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. Zbl0644.16008MR89j:16023
  16. [16] S. MONTGOMERY, Fixed Rings of Finite Automorphism Groups of Associative Rings (Lecture Notes in Mathematics, Vol. 818, Springer-Verlag, Berlin/New York, 1980). Zbl0449.16001MR81j:16041
  17. [17] R. W. RICHARDSON, Commuting varieties of semisimple Lie algebras and algebraic groups (Compositio Math., Vol. 38, 1979, pp. 311-322). Zbl0409.17006MR80c:17009
  18. [18] G. W. SCHWARZ, Lifting differential operators from orbit spaces (Ann. Sci. Ecole Norm. Sup., Vol. 28, 1995, pp. 253-306). Zbl0836.14032MR96f:14061
  19. [19] G. W. SCHWARZ, Invariant differential operators (Proceedings of the 1994 International Congress of Mathematics, to appear). Zbl0857.13025
  20. [20] V. S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Part I (Lecture Notes in Mathematics Vol. 576, Springer-Verlag, Berlin/New York, 1977). Zbl0354.43001MR57 #12789
  21. [21] N. WALLACH, Invariant differential operators on a reductive Lie algebra and Weyl group representations (J. Amer. Math. Soc., Vol. 6, 1993, pp. 779-816). Zbl0804.22004MR94a:17014

NotesEmbed ?

top

You must be logged in to post comments.