The jacobian modules of a representation of a Lie algebra and geometry of commuting varieties

Dmitrii I. Panyushev

Compositio Mathematica (1994)

  • Volume: 94, Issue: 2, page 181-199
  • ISSN: 0010-437X

How to cite

top

Panyushev, Dmitrii I.. "The jacobian modules of a representation of a Lie algebra and geometry of commuting varieties." Compositio Mathematica 94.2 (1994): 181-199. <http://eudml.org/doc/90333>.

@article{Panyushev1994,
author = {Panyushev, Dmitrii I.},
journal = {Compositio Mathematica},
keywords = {reductive group action; commuting variety; Jacobian module; module of covariants; open problems},
language = {eng},
number = {2},
pages = {181-199},
publisher = {Kluwer Academic Publishers},
title = {The jacobian modules of a representation of a Lie algebra and geometry of commuting varieties},
url = {http://eudml.org/doc/90333},
volume = {94},
year = {1994},
}

TY - JOUR
AU - Panyushev, Dmitrii I.
TI - The jacobian modules of a representation of a Lie algebra and geometry of commuting varieties
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 94
IS - 2
SP - 181
EP - 199
LA - eng
KW - reductive group action; commuting variety; Jacobian module; module of covariants; open problems
UR - http://eudml.org/doc/90333
ER -

References

top
  1. [Bo] N. Bourbaki, "Algèbre", Paris, Masson, 1970. 
  2. [BPV] J.R. Brennan, M.V. Pinto and W.V. Vasconcelos, The Jacobian module of a Lie algebra, Trans. Amer. Math. Soc.321 (1990), 183-196. Zbl0712.17004MR958883
  3. [HSV] J. Herzog, A. Simis and W.V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc.283 (1984), 661-683. Zbl0541.13005MR737891
  4. [Kac] V.G. Kac, Some remarks on nilpotent orbits, J. Algebra64 (1980), 190-213. Zbl0431.17007MR575790
  5. [KR] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math.93 (1971), 753-809. Zbl0224.22013MR311837
  6. [Kn] F. Knop, Über die Glattheit von Quotientenabbildungen, Manuscripta Math.56 (1986), 419-427. Zbl0585.14033MR860731
  7. [K] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1, Vieweg-Verlag, Braunschweig1984. Zbl0669.14003MR768181
  8. [LR] D. Luna and R.W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J.46 (1979), 487-496. Zbl0444.14010MR544240
  9. [Pa] D.I. Panyushev, On orbit spaces of finite and connected linear groups, Math. USSR-Izv.20 (1983), 97-101. Zbl0517.20019MR643895
  10. [P] V.S. Pyasetskii, Linear Lie groups acting with finitely many orbits, Functional Anal. Appl.9 (1975), 351-353. Zbl0326.22004
  11. [Ri] R.W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math.38 (1979), 311-327. Zbl0409.17006MR535074
  12. [SV] A. Simis and W.V. Vasconcelos, Krull dimension and integrality of symmetric algebras, Manuscripta Math.61 (1988), 63-78. Zbl0687.13010MR939141
  13. [Vi1] E.B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR-Izv. 10 (1976), 463-495. Zbl0371.20041MR430168
  14. [Vi2] E.B. Vinberg, Complexity of actions of reductive groups, Functional. Anal. Appl.20 (1986), 1-11. Zbl0601.14038MR831043
  15. [VP] E.B. Vinberg and V.L. Popov, "Invariant theory", in: Contemporary problems in Math. Fundamental aspects, v. 55. Moscow, VINITI, 1989 (Russian). (English translation in: Encyclopaedia of Math. Sci., v. 55, Berlin-Springer, 1994.) Zbl0789.14008MR1100485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.