Two random constructions inside lacunary sets
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 6, page 1853-1867
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeuwirth, Stefan. "Two random constructions inside lacunary sets." Annales de l'institut Fourier 49.6 (1999): 1853-1867. <http://eudml.org/doc/75404>.
@article{Neuwirth1999,
abstract = {We study the relationship between the growth rate of an integer sequence and harmonic and functional properties of the corresponding sequence of characters. In particular we show that every polynomial sequence contains a set that is $\Lambda (p)$ for all $p$ but is not a Rosenthal set. This holds also for the sequence of primes.},
author = {Neuwirth, Stefan},
journal = {Annales de l'institut Fourier},
keywords = {-set; Rosenthal set; equidistributed set of integers; uniformly distributed set of integers},
language = {eng},
number = {6},
pages = {1853-1867},
publisher = {Association des Annales de l'Institut Fourier},
title = {Two random constructions inside lacunary sets},
url = {http://eudml.org/doc/75404},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Neuwirth, Stefan
TI - Two random constructions inside lacunary sets
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1853
EP - 1867
AB - We study the relationship between the growth rate of an integer sequence and harmonic and functional properties of the corresponding sequence of characters. In particular we show that every polynomial sequence contains a set that is $\Lambda (p)$ for all $p$ but is not a Rosenthal set. This holds also for the sequence of primes.
LA - eng
KW - -set; Rosenthal set; equidistributed set of integers; uniformly distributed set of integers
UR - http://eudml.org/doc/75404
ER -
References
top- [1] G. BENNETT, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc., 57 (1962), 33-45. Zbl0104.11905
- [2] S.N. BERNŠTEĬN, On a modification of Chebyshev's inequality and on the deviation in Laplace's formula, in: Collected Works IV. Theory of probability and mathematical statistics (1911-1946), Nauka, 1964, 71-79, Russian.
- [3] J. BOURGAIN, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math., 61 (1988), 39-72. Zbl0642.28010MR89f:28037a
- [4] J. BOURGAIN, On Λ(p)-subsets of squares, Israel J. Math., 67 (1989), 291-311. Zbl0692.43005MR91d:43018
- [5] W.J. ELLISON, Les nombres premiers, Actualités Scientifiques et Industrielles 1366, Hermann, 1975. Zbl0313.10001MR54 #5138
- [6] P. ERDŐS, Problems and results in additive number theory, in: Colloque sur la théorie des nombres (Bruxelles, 1955), Georges Thone, 1956, 127-137. Zbl0073.03102
- [7] P. ERDŐS and A. RÉNYI, Additive properties of random sequences of positive integers, Acta Arith., 6 (1960), 83-110. Zbl0091.04401MR22 #10970
- [8] P. ERDŐS and S.J. TAYLOR, On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. London Math. Soc., (3) 7 (1957), 598-615. Zbl0111.26801MR19,1050b
- [9] G. GODEFROY, On coanalytic families of sets in harmonic analysis, Illinois J. Math., 35 (1991), 241-249. Zbl0703.43005MR92b:43011
- [10] H. HALBERSTAM and K.F. ROTH, Sequences, Springer, second ed., 1983. Zbl0498.10001MR83m:10094
- [11] K.E. HARE and I. KLEMES, Properties of Littlewood-Paley sets, Math. Proc. Cambridge Philos. Soc., 105 (1989), 485-494. Zbl0691.43006MR90f:42018
- [12] S. KARLIN, Bases in Banach spaces, Duke Math. J., 15 (1948), 971-985. Zbl0032.03102MR10,548c
- [13] Y. KATZNELSON, Suites aléatoires d'entiers, in: L'analyse harmonique dans le domaine complexe (Montpellier, 1972), E.J. Akutowicz (ed.), Lect. Notes Math., 336, Springer, 1973, 148-152. Zbl0274.42009MR53 #1176
- [14] Y. KATZNELSON and P. MALLIAVIN, Un critère d'analyticité pour les algèbres de restriction, C.R. Acad. Sci. Paris, 261 (1965), 4964-4967. Zbl0143.36001MR34 #3226a
- [15] Y. KATZNELSON and P. MALLIAVIN, Vérification statistique de la conjecture de la dichotomie sur une classe de d'algèbres de restriction, C.R. Acad. Sci. Paris, Sér. A-B, 262 (1966), A490-A492. Zbl0143.36002MR34 #3226b
- [16] D. LI, A remark about Λ(p)-sets and Rosenthal sets, Proc. Amer. Math. Soc., 126 (1998), 3329-3333. Zbl0907.43007MR99a:43005
- [17] J.E. LITTLEWOOD and R.E.A.C. PALEY, Theorems on Fourier series and power series, J. London Math. Soc., 6 (1931), 230-233. Zbl0002.18803JFM57.0318.01
- [18] F. LUST-PIQUARD, Éléments ergodiques et totalement ergodiques dans L∞(Γ), Studia Math., 69 (1981), 191-225. Zbl0476.43001MR84h:43003
- [19] F. LUST-PIQUARD, Bohr local properties of CΛ(T), Colloq. Math., 58 (1989), 29-38. Zbl0694.43005MR91c:43009
- [20] Y. MEYER, Endomorphismes des idéaux fermés de L1 (G), classes de Hardy et séries de Fourier lacunaires, Ann. sci. École Norm. Sup., (4) 1 (1968), 499-580. Zbl0169.18001MR39 #1910
- [21] Y. MEYER, Algebraic numbers and harmonic analysis, North-Holland, 1972. Zbl0267.43001MR58 #5579
- [22] S. NEUWIRTH, Metric unconditionality and Fourier analysis, Studia Math., 131 (1998), 19-62. Zbl0930.42005MR99f:42017
- [23] H.P. ROSENTHAL, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech., 17 (1967), 485-490. Zbl0194.16703MR35 #7064
- [24] W. RUDIN, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228. Zbl0091.05802MR22 #6972
- [25] R.C. VAUGHAN, The Hardy-Littlewood method, Cambridge University Press, 1981. Zbl0455.10034MR84b:10002
- [26] H. WEYL, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916), 313-352. Zbl46.0278.06JFM46.0278.06
- [27] K. ZELLER, Theorie der Limitierungsverfahren, Springer, 1958, Ergebnisse der Mathematik und ihrer Grenzgebiete (Neue Folge) 15. Zbl0085.04603MR22 #9759
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.