Metric unconditionality and Fourier analysis

Stefan Neuwirth

Studia Mathematica (1998)

  • Volume: 131, Issue: 1, page 19-62
  • ISSN: 0039-3223

Abstract

top
We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces L E p ( ) and C E ( ) of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces p E ( ) , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between L E p ( ) and L E p + 2 ( ) . These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if E = n k k 1 with | n k + 1 / n k | , then C E ( ) has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.

How to cite

top

Neuwirth, Stefan. "Metric unconditionality and Fourier analysis." Studia Mathematica 131.1 (1998): 19-62. <http://eudml.org/doc/216561>.

@article{Neuwirth1998,
abstract = {We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces $L^\{p\}_\{E\}()$ and $C_\{E\}()$ of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces $p_\{E\}()$, p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between $L^\{p\}_\{E\}()$ and $L^\{p+2\}_\{E\}()$. These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if $E = \{n_k\}_\{k≥1\}$ with $|n_\{k+1\}/n_k| → ∞$, then $C_\{E\}()$ has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.},
author = {Neuwirth, Stefan},
journal = {Studia Mathematica},
keywords = {Hadamard set; Sidon constant; almost 1-unconditionality; metric unconditional approximation property},
language = {eng},
number = {1},
pages = {19-62},
title = {Metric unconditionality and Fourier analysis},
url = {http://eudml.org/doc/216561},
volume = {131},
year = {1998},
}

TY - JOUR
AU - Neuwirth, Stefan
TI - Metric unconditionality and Fourier analysis
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 1
SP - 19
EP - 62
AB - We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces $L^{p}_{E}()$ and $C_{E}()$ of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces $p_{E}()$, p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between $L^{p}_{E}()$ and $L^{p+2}_{E}()$. These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if $E = {n_k}_{k≥1}$ with $|n_{k+1}/n_k| → ∞$, then $C_{E}()$ has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.
LA - eng
KW - Hadamard set; Sidon constant; almost 1-unconditionality; metric unconditional approximation property
UR - http://eudml.org/doc/216561
ER -

References

top
  1. [1] I. Berkes, On almost i.i.d. subsequences of the trigonometric system, in: Functional Analysis (Austin, 1986-87), E. W. Odell and H. P. Rosenthal (eds.), Lecture Notes in Math. 1332, Springer, 1988, 54-63. 
  2. [2] I. Berkes, Probability theory of the trigonometric system, in: Limit Theorems in Probability and Statistics (Pécs, 1989), I. Berkes, E. Csáki and P. Révész (eds.), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 35-58. Zbl0749.60020
  3. [3] J. P. M. Binet, Note sur une question relative à la théorie des nombres, C. R. Acad. Sci. Paris 12 (1841), 248-250. 
  4. [4] E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143. Zbl0101.08807
  5. [5] J. Bourgain and H. P. Rosenthal, Geometrical implications of certain finite dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82. Zbl0463.46011
  6. [6] V. Brouncker, Letter to John Wallis, in: Œuvres de Fermat 3, Gauthier-Villars, 1896, 419-420. 
  7. [7] P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces (Strobl, 1989), P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, 49-63. Zbl0743.41027
  8. [8] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys 64, Longman, 1993. Zbl0782.46019
  9. [9] Diophantus of Alexandria, Les six livres arithmétiques et le livre des nombres polygones, Blanchard, 1959. 
  10. [10] R. L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), 1755-1756. Zbl0853.11024
  11. [11] L. Euler, Solutio generalis quorundam problematum Diophanteorum, quae vulgo nonnisi solutiones speciales admittere videntur, in: Opera Omnia (I) II, Teubner, 1915, 428-458. 
  12. [12] L. Euler, Observationes circa bina biquadrata, quorum summam in duo alia biquadrata resolvere liceat, in: Opera Omnia (I) III, Teubner, 1917, 211-217. 
  13. [13] L. Euler, Specimen algorithmi singularis, in: Opera Omnia (I) XV, Teubner, 1927, 31-49. 
  14. [14] M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205. Zbl0411.46009
  15. [15] F. Forelli, The isometries of H p , Canad. J. Math. 16 (1964), 721-728. Zbl0132.09403
  16. [16] J. J. F. Fournier, Two UC-sets whose union is not a UC-set, Proc. Amer. Math. Soc. 84 (1982), 69-72. Zbl0511.43003
  17. [17] G. Godefroy and N. J. Kalton, Approximating sequences and bidual projections, Quart. J. Math. Oxford (2) 48 (1997), 179-202. Zbl0886.46020
  18. [18] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L 1 which embed into 1 , J. Reine Angew. Math. 471 (1996), 43-75. 
  19. [19] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
  20. [20] G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695. Zbl0631.46015
  21. [21] H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, 1983. 
  22. [22] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111. Zbl0645.43004
  23. [23] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. Zbl0496.10036
  24. [24] B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). Zbl0589.43001
  25. [25] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. Zbl0217.16103
  26. [26] J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier (Grenoble) 7 (1957), 293-314. Zbl0083.34401
  27. [27] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
  28. [28] N. J. Kalton and D. Werner, Property(M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178. 
  29. [29] A. L. Koldobsky, Isometries of L p ( X ; L q ) and equimeasurability, Indiana Univ. Math. J. 40 (1991), 677-705. 
  30. [30] D. Li, On Hilbert sets and C Λ ( G ) -spaces with no subspace isomorphic to c 0 , Colloq. Math. 68 (1995), 67-77; addendum, ibid., p. 79. Zbl0848.43006
  31. [31] D. Li, Complex Unconditional Metric Approximation Property for C Λ ( ) spaces, Studia Math. 121 (1996), 231-247. 
  32. [32] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. Zbl0362.46013
  33. [33] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series, J. London Math. Soc. 6 (1931), 230-233. Zbl0002.18803
  34. [34] J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, 1975. 
  35. [35] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. Zbl0324.43007
  36. [36] B. Maurey, Isomorphismes entre espaces H 1 , Acta Math. 145 (1980), 79-120. 
  37. [37] Y. Meyer, Endomorphismes des idéaux fermés de L 1 ( G ) , classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1 (1968), 499-580. Zbl0169.18001
  38. [38] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972. Zbl0267.43001
  39. [39] I. M. Miheev [I. M. Mikheev], On lacunary series, Math. USSR-Sb. 27 (1975), 481-502. Zbl0371.42006
  40. [40] A. Moessner, Einige numerische Identitäten, Proc. Indian Acad. Sci. Sect. A 10 (1939), 296-306. Zbl65.1144.04
  41. [41] L. J. Mordell, Diophantine Equations, Academic Press, 1969. 
  42. [42] T. Murai, On lacunary series, Nagoya Math. J. 85 (1982), 87-154. 
  43. [43] A. Pełczyński, On simultaneous extension of continuous functions. A generalization of theorems of Rudin-Carleson and Bishop, Studia Math. 24 (1964), 285-304; supplement, ibid. 25 (1965), 157-161. Zbl0145.16204
  44. [44] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces, ibid. 40 (1971), 91-108. Zbl0221.46014
  45. [45] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726. Zbl0468.43008
  46. [46] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, in: Topics in Modern Harmonic Analysis II (Torino/Milano, 1982), L. De Michele and F. Ricci (eds.), Ist. Naz. Alta Mat. Francesco Severi, 1983, 911-944. 
  47. [47] A. I. Plotkin, Continuation of L p -isometries, J. Soviet Math. 2 (1974), 143-165. Zbl0283.46018
  48. [48] S. Ramanujan, Notebooks, Tata Inst. Fundam. Research, 1957. 
  49. [49] S. K. Rao, On sums of sixth powers, J. London Math. Soc. 9 (1934), 172-173. Zbl0009.29902
  50. [50] M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 43-47. Zbl0070.13804
  51. [51] H. P. Rosenthal, Sous-espaces de L 1 . Cours de troisième cycle, Université Paris 6, 1979 (unpublished). 
  52. [52] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. Zbl0091.05802
  53. [53] W. Rudin, L p -isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228. 
  54. [54] I. Z. Ruzsa, On difference sets, Studia Sci. Math. Hungar. 13 (1978), 319-326. Zbl0423.10027
  55. [55] I. Singer, Bases in Banach Spaces II, Springer, 1981. Zbl0467.46020
  56. [56] C. M. Skinner and T. D. Wooley, On equal sums of two powers, J. Reine Angew. Math. 462 (1995), 57-68. Zbl0820.11059
  57. [57] C. L. Stewart and R. Tijdeman, On infinite-difference sets, Canad. J. Math. 31 (1979), 897-910. Zbl0394.10030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.