Metric unconditionality and Fourier analysis
Studia Mathematica (1998)
- Volume: 131, Issue: 1, page 19-62
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topNeuwirth, Stefan. "Metric unconditionality and Fourier analysis." Studia Mathematica 131.1 (1998): 19-62. <http://eudml.org/doc/216561>.
@article{Neuwirth1998,
abstract = {We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces $L^\{p\}_\{E\}()$ and $C_\{E\}()$ of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces $p_\{E\}()$, p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between $L^\{p\}_\{E\}()$ and $L^\{p+2\}_\{E\}()$. These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if $E = \{n_k\}_\{k≥1\}$ with $|n_\{k+1\}/n_k| → ∞$, then $C_\{E\}()$ has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.},
author = {Neuwirth, Stefan},
journal = {Studia Mathematica},
keywords = {Hadamard set; Sidon constant; almost 1-unconditionality; metric unconditional approximation property},
language = {eng},
number = {1},
pages = {19-62},
title = {Metric unconditionality and Fourier analysis},
url = {http://eudml.org/doc/216561},
volume = {131},
year = {1998},
}
TY - JOUR
AU - Neuwirth, Stefan
TI - Metric unconditionality and Fourier analysis
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 1
SP - 19
EP - 62
AB - We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces $L^{p}_{E}()$ and $C_{E}()$ of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces $p_{E}()$, p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between $L^{p}_{E}()$ and $L^{p+2}_{E}()$. These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if $E = {n_k}_{k≥1}$ with $|n_{k+1}/n_k| → ∞$, then $C_{E}()$ has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.
LA - eng
KW - Hadamard set; Sidon constant; almost 1-unconditionality; metric unconditional approximation property
UR - http://eudml.org/doc/216561
ER -
References
top- [1] I. Berkes, On almost i.i.d. subsequences of the trigonometric system, in: Functional Analysis (Austin, 1986-87), E. W. Odell and H. P. Rosenthal (eds.), Lecture Notes in Math. 1332, Springer, 1988, 54-63.
- [2] I. Berkes, Probability theory of the trigonometric system, in: Limit Theorems in Probability and Statistics (Pécs, 1989), I. Berkes, E. Csáki and P. Révész (eds.), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 35-58. Zbl0749.60020
- [3] J. P. M. Binet, Note sur une question relative à la théorie des nombres, C. R. Acad. Sci. Paris 12 (1841), 248-250.
- [4] E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143. Zbl0101.08807
- [5] J. Bourgain and H. P. Rosenthal, Geometrical implications of certain finite dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82. Zbl0463.46011
- [6] V. Brouncker, Letter to John Wallis, in: Œuvres de Fermat 3, Gauthier-Villars, 1896, 419-420.
- [7] P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces (Strobl, 1989), P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, 49-63. Zbl0743.41027
- [8] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys 64, Longman, 1993. Zbl0782.46019
- [9] Diophantus of Alexandria, Les six livres arithmétiques et le livre des nombres polygones, Blanchard, 1959.
- [10] R. L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), 1755-1756. Zbl0853.11024
- [11] L. Euler, Solutio generalis quorundam problematum Diophanteorum, quae vulgo nonnisi solutiones speciales admittere videntur, in: Opera Omnia (I) II, Teubner, 1915, 428-458.
- [12] L. Euler, Observationes circa bina biquadrata, quorum summam in duo alia biquadrata resolvere liceat, in: Opera Omnia (I) III, Teubner, 1917, 211-217.
- [13] L. Euler, Specimen algorithmi singularis, in: Opera Omnia (I) XV, Teubner, 1927, 31-49.
- [14] M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205. Zbl0411.46009
- [15] F. Forelli, The isometries of , Canad. J. Math. 16 (1964), 721-728. Zbl0132.09403
- [16] J. J. F. Fournier, Two UC-sets whose union is not a UC-set, Proc. Amer. Math. Soc. 84 (1982), 69-72. Zbl0511.43003
- [17] G. Godefroy and N. J. Kalton, Approximating sequences and bidual projections, Quart. J. Math. Oxford (2) 48 (1997), 179-202. Zbl0886.46020
- [18] G. Godefroy, N. J. Kalton and D. Li, On subspaces of which embed into , J. Reine Angew. Math. 471 (1996), 43-75.
- [19] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
- [20] G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695. Zbl0631.46015
- [21] H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, 1983.
- [22] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111. Zbl0645.43004
- [23] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. Zbl0496.10036
- [24] B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). Zbl0589.43001
- [25] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. Zbl0217.16103
- [26] J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier (Grenoble) 7 (1957), 293-314. Zbl0083.34401
- [27] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
- [28] N. J. Kalton and D. Werner, Property(M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178.
- [29] A. L. Koldobsky, Isometries of and equimeasurability, Indiana Univ. Math. J. 40 (1991), 677-705.
- [30] D. Li, On Hilbert sets and -spaces with no subspace isomorphic to , Colloq. Math. 68 (1995), 67-77; addendum, ibid., p. 79. Zbl0848.43006
- [31] D. Li, Complex Unconditional Metric Approximation Property for spaces, Studia Math. 121 (1996), 231-247.
- [32] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. Zbl0362.46013
- [33] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series, J. London Math. Soc. 6 (1931), 230-233. Zbl0002.18803
- [34] J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, 1975.
- [35] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. Zbl0324.43007
- [36] B. Maurey, Isomorphismes entre espaces , Acta Math. 145 (1980), 79-120.
- [37] Y. Meyer, Endomorphismes des idéaux fermés de , classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1 (1968), 499-580. Zbl0169.18001
- [38] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972. Zbl0267.43001
- [39] I. M. Miheev [I. M. Mikheev], On lacunary series, Math. USSR-Sb. 27 (1975), 481-502. Zbl0371.42006
- [40] A. Moessner, Einige numerische Identitäten, Proc. Indian Acad. Sci. Sect. A 10 (1939), 296-306. Zbl65.1144.04
- [41] L. J. Mordell, Diophantine Equations, Academic Press, 1969.
- [42] T. Murai, On lacunary series, Nagoya Math. J. 85 (1982), 87-154.
- [43] A. Pełczyński, On simultaneous extension of continuous functions. A generalization of theorems of Rudin-Carleson and Bishop, Studia Math. 24 (1964), 285-304; supplement, ibid. 25 (1965), 157-161. Zbl0145.16204
- [44] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces, ibid. 40 (1971), 91-108. Zbl0221.46014
- [45] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726. Zbl0468.43008
- [46] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, in: Topics in Modern Harmonic Analysis II (Torino/Milano, 1982), L. De Michele and F. Ricci (eds.), Ist. Naz. Alta Mat. Francesco Severi, 1983, 911-944.
- [47] A. I. Plotkin, Continuation of -isometries, J. Soviet Math. 2 (1974), 143-165. Zbl0283.46018
- [48] S. Ramanujan, Notebooks, Tata Inst. Fundam. Research, 1957.
- [49] S. K. Rao, On sums of sixth powers, J. London Math. Soc. 9 (1934), 172-173. Zbl0009.29902
- [50] M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 43-47. Zbl0070.13804
- [51] H. P. Rosenthal, Sous-espaces de . Cours de troisième cycle, Université Paris 6, 1979 (unpublished).
- [52] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. Zbl0091.05802
- [53] W. Rudin, -isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228.
- [54] I. Z. Ruzsa, On difference sets, Studia Sci. Math. Hungar. 13 (1978), 319-326. Zbl0423.10027
- [55] I. Singer, Bases in Banach Spaces II, Springer, 1981. Zbl0467.46020
- [56] C. M. Skinner and T. D. Wooley, On equal sums of two powers, J. Reine Angew. Math. 462 (1995), 57-68. Zbl0820.11059
- [57] C. L. Stewart and R. Tijdeman, On infinite-difference sets, Canad. J. Math. 31 (1979), 897-910. Zbl0394.10030
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.