Ensembles de Rosenthal et propriété de Radon-Nikodym relative
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 3, page 599-610
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Benyamini (Y.), Lindenstrauss (J.).— Geometric nonlinear functional analysis, Vol. 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society, Providence, RI (2000). Zbl0946.46002MR1727673
- Bukhvalov (A. V.), Danilevich (A. A.).— Boundary properties of analytic and harmonic functions with values in Banach spaces, Mat. Zametki 31, p. 203–214 (1982), no. 2 ; English translation Math. Notes 31, p. 104–110 (1982). Zbl0496.30029MR649004
- Daher (M.).— Translations mesurables et ensembles de Rosenthal, Annales de la Fac. de Toulouse, vol. XIV, n I, p. 105–121 (2005). Zbl1071.43003MR2118035
- Diestel (J.), Uhl Jr (J. J.).— Vector measures, Math. Surveys N 15 (1977). Zbl0369.46039MR453964
- Dowling (P. N.).— Radon-Nikodym properties associated with subsets of countable discrete abelian groups, Trans. Amer. Math. Soc. 327, no. 2, p. 879-890 (1991). Zbl0771.46013MR1053113
- Dressler (R. E.), Pigno (L.).— Rosenthal sets and Riesz sets, Duke Math. J. 41, p. 675–677 (1974). Zbl0306.43006MR511044
- Dressler (R. E.), Pigno (L.).— Une remarque sur les ensembles de Rosenthal et Riesz, C. R. Acad. Sci. Paris Sér. A-B 280, p. A1281–A1282 (1975). Zbl0299.43001MR374824
- Edgar (G. A.).— Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Almost evrywhere convergence (Columbus, OH, 1988), Academic Press, Boston, MA, p. 195–213 (1989). Zbl0692.46011MR1035247
- Godefroy (G.).— On coanalytic families of sets in harmonic analysis, Illinois J. Math. 35, no. 2, p. 241–249 (1991). Zbl0703.43005MR1091441
- Hewitt (E.), Ross (K. A.).— Abstract harmonic analysis II, Springer-Verlag, Berlin-Heidelberg-New York (1970). Zbl0213.40103MR262773
- Lefèvre (P.), Li (D.), Queffélec (H.), Rodríguez-Piazza (L.).— Some translation-invariant Banach function spaces which contain , Studia Math. 163, no. 2, p. 137–155 (2004). Zbl1048.43004MR2047376
- Lefèvre (P.),Rodríguez-Piazza (L.).— Anal. 233, no. 2, p. 545–560 (2006). Zbl1089.43003MR2214587
- Li (D.).— A class of Riesz sets, Proc. Amer. Math. Soc. 119, p. 889–892 (1993). Zbl0796.43004MR1176071
- Li (D.).— On Hilbert sets and -spaces with no subspace isomorphic to , Colloq. Math. 68, no. 1, p. 67–77 (1995). Zbl0848.43006MR1311764
- Li (D.).— A remark about -sets and Rosenthal sets, Proc. Amer. Math. Soc. 126, no. 11, p. 3329–3333 (1998). Zbl0907.43007MR1459133
- Li (D.), Queffélec (H.), Rodríguez-Piazza (L.).— Some new thin sets of integers in harmonic analysis, J. Anal. Math. 86, p. 105–138 (2002). Zbl1018.43004MR1894479
- Lust-Piquard (F.).— Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris 282, p. 833–835 (1976). Zbl0324.43007MR404999
- Lust-Piquard (F.).— L’espace des fonctions presque-périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Colloq. Math. 41, p. 273–284 (1979). Zbl0462.43007MR591934
- Lust-Piquard (F.).— Eléments ergodiques et totalement ergodiques dans , Studia Math. 69, p. 191–225 (1981). Zbl0476.43001MR647138
- Lust-Piquard (F.).— Bohr local properties of , Colloq. Math. 58, no. 1, p. 29–38 (1989). Zbl0694.43005MR1028158
- Neuwirth (S.).— Two random constructions inside lacunary sets, Ann. Inst. Fourier (Grenoble) 49, no. 6, p. 1853–1867 (1999). Zbl0955.42009MR1738068
- Odell (E.), Rosenthal (H. P.).— A double-dual characterization of separable Banach spaces containig , Israel J. Math. 20, p. 375–384 (1975). Zbl0312.46031MR377482
- Parthasarthy (T.).— Selection theorems and their applications, Lecture Notes in Math. Vol. 263, Springer-Verlag-Berlin New York (1972). Zbl0239.54011MR417368
- Rosenthal (H. P.).— On trigonometric series associated with weak-closed subspaces of continuous, J. Math. Mech. 17, p. 485–490 (1967). Zbl0194.16703MR216229
- Robdera (M.), Saab (P.).— Complete continuity properties of Banach spaces associated with subsets of a discrete abelian group, Glasgow Math. J. 43, p. 185-198 (2001). Zbl0992.46031MR1838624
- Rudin (W.).— Invariant means on , Studia Math. 44, p. 219–227 (1972). Zbl0215.47004MR304975
- Watbled (F.).— Rosenthal sets for Banach valued functions, Arch. Math. 66, p. 479–489 (1996). Zbl0854.43007MR1388098