Sur l'idéal du cône autocommutant des super algèbres de Lie basiques classiques et étranges

Caroline Gruson

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 807-831
  • ISSN: 0373-0956

Abstract

top
In this paper, we show that the cone of the odd part of a basic classical or strange Lie superalgebra which is defined by the equations [ X , X ] = 0 is reduced.

How to cite

top

Gruson, Caroline. "Sur l'idéal du cône autocommutant des super algèbres de Lie basiques classiques et étranges." Annales de l'institut Fourier 50.3 (2000): 807-831. <http://eudml.org/doc/75439>.

@article{Gruson2000,
abstract = {Cet article démontre que le cône de la partie impaire d’une super algèbre de Lie basique classique ou étrange défini par les équations $[X,X]=0$ est réduit.},
author = {Gruson, Caroline},
journal = {Annales de l'institut Fourier},
keywords = {Lie superalgebras; center of the universal enveloping algebra; desingularization; reduced schemes},
language = {fre},
number = {3},
pages = {807-831},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur l'idéal du cône autocommutant des super algèbres de Lie basiques classiques et étranges},
url = {http://eudml.org/doc/75439},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Gruson, Caroline
TI - Sur l'idéal du cône autocommutant des super algèbres de Lie basiques classiques et étranges
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 807
EP - 831
AB - Cet article démontre que le cône de la partie impaire d’une super algèbre de Lie basique classique ou étrange défini par les équations $[X,X]=0$ est réduit.
LA - fre
KW - Lie superalgebras; center of the universal enveloping algebra; desingularization; reduced schemes
UR - http://eudml.org/doc/75439
ER -

References

top
  1. [Bo] R. BOTT, Homogeneous vector bundles, Annals of Math., 66 (1957), 203-248. Zbl0094.35701MR19,681d
  2. [Bou] N. BOURBAKI, Groupes et algèbres de Lie, chap. IV, V et VI, Hermann, 1968. 
  3. [Br] M. BRION, Représentations exceptionnelles des groupes semi-simples, Annales de l'ENS, 4eme série, tome 18 (1985), 345-387. Zbl0588.22010MR87e:14043
  4. [Fu-Ha] W. FULTON and J. HARRIS, Representation theory, A first course, GTM 129, Springer Verlag (1991). Zbl0744.22001MR93a:20069
  5. [Ga] D. GARFINKLE, A new construction of the Joseph ideal, Ph.D. thesis, M.I.T. Cambridge (1982). 
  6. [Gri-Ha] Ph. GRIFFITHS and J. HARRIS, Principles of algebraic geometry, Wiley inter-science, 1978. Zbl0408.14001
  7. [Gr1] C. GRUSON, Sur les relations de Plücker dans le cas d'une super algèbre de Lie basique classique complexe, Journal of Geometry and Physics, 14 (1994), 43-64. Zbl0804.17002MR95c:17012
  8. [Gr2] C. GRUSON, Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie, Annales de l'Institut Fourier, 47-2 (1997), 531-553. Zbl0974.17024MR98b:17024
  9. [Ha] R. HARTSHORNE, Algebraic geometry, GTM 52, Springer Verlag (1977). Zbl0367.14001MR57 #3116
  10. [Ka] V.G. KAC, Lie superalgebras, Advances in Math., 26 (1977), 8-96. Zbl0366.17012MR58 #5803
  11. [Kem] G. KEMPKEN, Ein Darstellung der Kochers Ãk, Bonner Mathematische Schriften, 137 (1982), 1-159. Zbl0498.14021MR84a:14022
  12. [Ke] G. KEMPF, On the collapsing of homogeneous bundles, Invent. Math., 37 (1976), 229-239. Zbl0338.14015MR54 #12799
  13. [Kr] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspekte der Math. D1, Vieweg-Verlag (1984). Zbl0569.14003MR86j:14006
  14. [KrPr1] H. KRAFT and C. PROCESI, Closures of conjugacy classes of matrices are normal, Inv. Math., 53 (1979), 227-247. Zbl0434.14026MR80m:14037
  15. [KrPr2] H. KRAFT and C. PROCESI, On the geometry of conjugacy classes in classical groups, Comment. Math. Helvet., 57 (1982), 539-602. Zbl0511.14023MR85b:14065
  16. [LaTo] G. LANCASTER and J. TOWBER, Representation functors and flag algebras for the classical groups I, J. of algebra 59, (1979), 16-38. Zbl0441.14013MR80i:14020
  17. [Ma] I.G. MACDONALD, Symmetric functions and Hall polynomials, Oxford Math. Monographs (1979). Zbl0487.20007MR84g:05003
  18. [Pa] D. PANYUSHEV, Parabolic subgroups with abelian unipotent radical as a testing site for invariant theory, Max Planck Institute preprint series 1998, n. 21. Zbl0955.20028
  19. [St] E. STRICKLANDOn the conormal bundle of the determinantal variety, J. Algebra, 75 (1982), 523-537. Zbl0493.14030MR84g:14053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.