Odd nilpotent cone of orthosymplectic Lie superalgebras

Caroline Gruson[1]; Séverine Leidwanger[2]

  • [1] Institut Elie Cartan, UMR 7502 du CNRS Faculté des sciences Université Henri Poincaré (Nancy 1) BP 239 54506 VANDOEUVRE-les-Nancy Cedex FRANCE
  • [2] Institut de mathématiques de Jussieu, UMR 7586, Equipe de Théorie des Groupes Case 7012 2 place Jussieu F-75251 Paris Cedex 05 FRANCE

Annales mathématiques Blaise Pascal (2010)

  • Volume: 17, Issue: 2, page 303-326
  • ISSN: 1259-1734

Abstract

top
We study the odd nilpotent cone of orthosymplectic Lie superalgebras, we look at nilpotent orbits and their closure ordering and we give a desingularisation of the cone.

How to cite

top

Gruson, Caroline, and Leidwanger, Séverine. "Cônes nilpotents des super algèbres de Lie orthosymplectiques." Annales mathématiques Blaise Pascal 17.2 (2010): 303-326. <http://eudml.org/doc/116354>.

@article{Gruson2010,
abstract = {Nous étudions le cône nilpotent impair des super algèbres de Lie orthosymplectiques. Nous nous intéressons aux orbites nilpotentes impaires qui le constituent, à la relation d’ordre sur leurs adhérences et donnons une désingularisation de ce cône .},
affiliation = {Institut Elie Cartan, UMR 7502 du CNRS Faculté des sciences Université Henri Poincaré (Nancy 1) BP 239 54506 VANDOEUVRE-les-Nancy Cedex FRANCE; Institut de mathématiques de Jussieu, UMR 7586, Equipe de Théorie des Groupes Case 7012 2 place Jussieu F-75251 Paris Cedex 05 FRANCE},
author = {Gruson, Caroline, Leidwanger, Séverine},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Lie superalgebras; Nilpotent orbits; Algebraic groups; Desingularization of nilpotent cones},
language = {fre},
month = {7},
number = {2},
pages = {303-326},
publisher = {Annales mathématiques Blaise Pascal},
title = {Cônes nilpotents des super algèbres de Lie orthosymplectiques},
url = {http://eudml.org/doc/116354},
volume = {17},
year = {2010},
}

TY - JOUR
AU - Gruson, Caroline
AU - Leidwanger, Séverine
TI - Cônes nilpotents des super algèbres de Lie orthosymplectiques
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 303
EP - 326
AB - Nous étudions le cône nilpotent impair des super algèbres de Lie orthosymplectiques. Nous nous intéressons aux orbites nilpotentes impaires qui le constituent, à la relation d’ordre sur leurs adhérences et donnons une désingularisation de ce cône .
LA - fre
KW - Lie superalgebras; Nilpotent orbits; Algebraic groups; Desingularization of nilpotent cones
UR - http://eudml.org/doc/116354
ER -

References

top
  1. D. H. Collingwood, W. M. McGovern, Nilpotent orbits in semisimple Lie Algebras, (1993), Van Nostrand Reinhold Zbl0972.17008MR1251060
  2. D. Z. Djoković, M. Litvinov, The closure ordering of nilpotent orbits of the complex symmetric pair S O p + q , S O p × S O q , Canad. J. Math. 55 (2003), 1155-1190 Zbl1060.17002
  3. C. Gruson, Finitude de l’homologie de certains modules de dimension finie sur une super algèbre de Lie, Ann. Inst. Fourier 47 (1997), 531-553 Zbl0974.17024MR1450424
  4. C. Gruson, Sur l’idéal autocommutant des super algèbres de Lie basiques classiques et étranges, Ann. Inst. Fourier 50 (2000), 807-831 Zbl1063.17011MR1779895
  5. V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) 676 (1978), 597-626, Springer, Berlin Zbl0388.17002MR519631
  6. V.G. Kac, Some remarks on nilpotent orbits, J. of Algebra 64 (1980), 190-213 Zbl0431.17007MR575790
  7. H. Kraft, C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. (1982), 539-602 Zbl0511.14023MR694606
  8. J. van de Leur, Contragredient Lie superalgebras of finite growth, (1986) 
  9. T. Ohta, The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. 43 (1991), 161-211 Zbl0738.22007MR1104427
  10. T. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279-293 Zbl0376.17002MR491988
  11. T. A. Springer, Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982 92 (1982), 249-273, Soc. Math. France, Paris Zbl0526.22014MR689533
  12. T. Vust, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier 26 (1976), 1-31 Zbl0314.20035MR404280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.