Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie

Caroline Gruson

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 2, page 531-553
  • ISSN: 0373-0956

Abstract

top
In this paper, we give an hypothesis to make sure that the homology of a Lie superalgebra operating on a finite dimensional super vector space is finite.

How to cite

top

Gruson, Caroline. "Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie." Annales de l'institut Fourier 47.2 (1997): 531-553. <http://eudml.org/doc/75236>.

@article{Gruson1997,
abstract = {Le but de cet article est de formuler une hypothèse permettant d’affirmer que l’homologie d’une super algèbre de Lie à valeurs dans un module de dimension finie est de dimension finie},
author = {Gruson, Caroline},
journal = {Annales de l'institut Fourier},
keywords = {Lie superalgebras; Koszul complex; stability in the sense of Mumford},
language = {fre},
number = {2},
pages = {531-553},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie},
url = {http://eudml.org/doc/75236},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Gruson, Caroline
TI - Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 2
SP - 531
EP - 553
AB - Le but de cet article est de formuler une hypothèse permettant d’affirmer que l’homologie d’une super algèbre de Lie à valeurs dans un module de dimension finie est de dimension finie
LA - fre
KW - Lie superalgebras; Koszul complex; stability in the sense of Mumford
UR - http://eudml.org/doc/75236
ER -

References

top
  1. [Bou] N. BOURBAKI, Groupes et algèbres de Lie, chap. IV, V et VI, Hermann, 1968. 
  2. [DaKa] J. DADOK and V.G. KAC, Polar representations, Journal of Algebra, 92 (1985), 504-524. Zbl0611.22009MR86e:14023
  3. [Fu] D.B. FUKS, Cohomology of infinite dimensional Lie algebras, Consultants Bureau, New York, 1986. Zbl0667.17005MR88b:17001
  4. [FuLe] D.B. FUKS and D.A. LEITES, Cohomology of Lie superalgebras, Comptes Rendus de l'Académie Bulgare des Sciences, tome 37, n. 12 (1984). Zbl0586.17005MR87e:17022
  5. [God] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. 
  6. [GHV] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, curvature, and cohomology, Volume I, II, III. Pure and Applied Mathematics, Vol. 45, 46, 47, Academic Press, New York-London, 1976. Zbl0372.57001
  7. [Ha] R. HARTSHORNE, Algebraic geometry, GTM 52, Springer (1977). Zbl0367.14001MR57 #3116
  8. [Ka1] V.G. KAC, Lie superalgebras, Advances in Math., 26 (1977), 8-96. Zbl0366.17012MR58 #5803
  9. [Ka2] V.G. KAC, Some remarks on nilpotent orbits, Journal of Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
  10. [LuRi] D. LUNA and R.W. RICHARDSON, A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. Zbl0444.14010MR80k:14049
  11. [MuFo] D. MUMFORD and J. FOGARTY, Geometric invariant theory, second edition, Ergebnisse 34, Springer (1982). Zbl0504.14008MR86a:14006
  12. [Se] V. SERGANOVA, Automorphisms of simple Lie superalgebras, Math. URSS Izvestiya, vol. 24, n. 3 (1985), 539-551. Zbl0565.17001
  13. [Vu] T. VUST, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26-1 (1976), 1-31. Zbl0314.20035MR53 #8082
  14. [We] H. WEYL, The Classical Groups, their Invariants and Representations, Princeton, University Press, 1946. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.