Explicit Kazhdan constants for representations of semisimple and arithmetic groups

Yehuda Shalom

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 833-863
  • ISSN: 0373-0956

Abstract

top
Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property ( T ) . For any such group, G , we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice Γ in G are obtained, for a “geometric” generating set of the form Γ B r , where B r G is a ball of radius r , and the dependence of r on Γ is described explicitly. Furthermore, for all rank one Lie groups we derive explicit Kazhdan constants, for any family of representations which admits a spectral gap. Several applications of our methods are discussed as well, among them, an extension of Howe-Moore’s theorem.

How to cite

top

Shalom, Yehuda. "Explicit Kazhdan constants for representations of semisimple and arithmetic groups." Annales de l'institut Fourier 50.3 (2000): 833-863. <http://eudml.org/doc/75440>.

@article{Shalom2000,
abstract = {Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property $(T)$. For any such group, $G$, we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice $\Gamma $ in $G$ are obtained, for a “geometric” generating set of the form $\Gamma \cap B_r$, where $B_r \subset G$ is a ball of radius $r$, and the dependence of $r$ on $\Gamma $ is described explicitly. Furthermore, for all rank one Lie groups we derive explicit Kazhdan constants, for any family of representations which admits a spectral gap. Several applications of our methods are discussed as well, among them, an extension of Howe-Moore’s theorem.},
author = {Shalom, Yehuda},
journal = {Annales de l'institut Fourier},
keywords = {semisimple groups; arithmetic groups; lattices; property ; Kazhdan constants; topological group; Kazhdan set},
language = {eng},
number = {3},
pages = {833-863},
publisher = {Association des Annales de l'Institut Fourier},
title = {Explicit Kazhdan constants for representations of semisimple and arithmetic groups},
url = {http://eudml.org/doc/75440},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Shalom, Yehuda
TI - Explicit Kazhdan constants for representations of semisimple and arithmetic groups
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 833
EP - 863
AB - Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property $(T)$. For any such group, $G$, we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice $\Gamma $ in $G$ are obtained, for a “geometric” generating set of the form $\Gamma \cap B_r$, where $B_r \subset G$ is a ball of radius $r$, and the dependence of $r$ on $\Gamma $ is described explicitly. Furthermore, for all rank one Lie groups we derive explicit Kazhdan constants, for any family of representations which admits a spectral gap. Several applications of our methods are discussed as well, among them, an extension of Howe-Moore’s theorem.
LA - eng
KW - semisimple groups; arithmetic groups; lattices; property ; Kazhdan constants; topological group; Kazhdan set
UR - http://eudml.org/doc/75440
ER -

References

top
  1. [Ba] M.W. BALDONI SILVA, Unitary dual of Sp(n, 1), n ≥ 2, Duke Math. Journal, 48 (1981), 549-583. Zbl0496.22019MR83e:22019
  2. [BaSw] W. BALLMANN and J. SWIATKOWSKI, On L2-cohomology and property (T) for automorphism groups of polyhedral cell complexes, GAFA, 7 (1997), 615-645. Zbl0897.22007MR98m:20043
  3. [BB] M.W. BALDONI SILVA and D. BARBASCH, The unitary spectrum for real rank one groups, Invent. Math., 72 (1983), 27-55. Zbl0561.22009MR84k:22022
  4. [Be1] M. E. B. BEKKA, On uniqueness of invariant means, Proc. AMS, 126 (1998), 507-514. Zbl0885.43003MR98d:43002
  5. [Be2] M. E. B. BEKKA, Restrictions of unitary representations to lattices and associated C*-algebras, J. Funct. Analysis, Vol 143 (1997), 33-41. Zbl0883.22006MR97k:46066
  6. [BCJ] M. E. B. BEKKA, P-A. CHERIX and P. JOLISSAINT, Kazhdan constants associated with Laplacian on connected Lie groups, J. Lie Theory, 8, no. 1 (1998), 95-110. Zbl0899.22012
  7. [BS] M. BURGER and P. SARNAK, Ramanujan duals II, Invent. Math., 106, (1991), 1-11. Zbl0774.11021
  8. [Bur] M. BURGER, Kazhdan constants for SL3(ℤ), J. reine angew. Math., 413 (1991), 36-67. Zbl0704.22009MR92c:22013
  9. [BM] M. E. B. BEKKA and M. MAYER, On Kazhdan's property (T) and Kazhdan constants associated to a Laplacian for SL (3, ℝ), preprint. Zbl0947.22002
  10. [BZ] I.N. BERNSTEIN and A.V. ZELEVINSKI, Representations of the group GLn (F) where F is a non-archimedian local field, Russian Math. Surveys, 31 (1976), 1-68. Zbl0348.43007
  11. [CHH] M. COWLING, U. HAAGERUP and R. HOWE, Almost L2 matrix coefficients, J. reine angew. Math., 387 (1988), 97-110. Zbl0638.22004MR89i:22008
  12. [CMS] D.I. CARTWRIGHT, W. MLOTKOWSKI, T. STEGER, Property (T) and Ã2 groups, Ann. Inst. Fourier, 44-1 (1994), 213-248. Zbl0792.43002MR95j:20024
  13. [Co] M. COWLING, Sur les coefficients des representations unitaires des groupes de Lie simples, Lect. Notes in Math, 739 (1979), 132-178. Zbl0417.22010MR81e:22019
  14. [CS] M. COWLING and T. STEGER, The irreducibility of restrictions of unitary representations to lattices, J. reine angew. Math., 420 (1991), 85-98. Zbl0760.22014MR93e:22019
  15. [Dix] J. DIXMIER, C*-Algebras, North-Holland, Amsterdam, 1977. Zbl0372.46058
  16. [DG] Y. DERRIENNIC and Y. GUIVARC'H, Théorème de renouvellement pour les groupes non moyennables, C. R. Acad. Sci. Paris, 277 (1973), A613-A615. Zbl0272.60005MR48 #7332
  17. [DV] A. DEUTSCH and A. VALETTE, On diameters of orbits of compact groups in unitary representations, J. Austral. Math. Soc., Ser. A, 59 (1995), 308-312. Zbl0853.22004MR96i:22008
  18. [Ey] P. EYMARD, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. Zbl0169.46403MR37 #4208
  19. [Fe] J. FELL, Weak containment and induced representations of groups, Canad. J. Math., 14 (1962), 237-268. Zbl0138.07301MR27 #242
  20. [Fu] H. FURSTENBERG, Random walks and discrete subgroups of Lie groups, in: Advances in Probability Vol. 1, ed. P. Ney, Marcel Dekker INC, New-York, 1971, 2-63. Zbl0221.22008MR44 #1794
  21. [FS1] A. FURMAN and Y. SHALOM, Sharp ergodic theorems for groups actions and strong ergodicity, Ergodic Theory and Dynamical Systems, 19, no. 4 (1999), 1037-1061. Zbl0947.37002MR2000i:37001
  22. [FS2] A. FURMAN and Y. SHALOM, Random walks on Hilbert spaces and Lyapunov exponents, in preparation. 
  23. [Gre] F.P. GREENLEAF, Invariant Means on Topological Groups, Van Nostrand, New-York, 1969. Zbl0174.19001MR40 #4776
  24. [Gro] M. GROMOV, Hyperbolic groups, in: Essays in Group Theory, S. Gersten ed., Springer, 1987, 75-265. Zbl0634.20015MR89e:20070
  25. [GH] R. GRIGORCHUK and P. de la HARPE, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems, 3 (1997), 51-89. Zbl0949.20033MR98d:20039
  26. [GV] R. GANGOLLI and V.S. VARADARAJAN, Harmonic Analysis of Spherical Functions in Real Reductive Groups, Springer Verlag, 1988. Zbl0675.43004MR89m:22015
  27. [HM] R. E. HOWE and C. C. MOORE, Asymptotic properties of unitary representations, J. Func. Anal., 32 (1979), 72-96. Zbl0404.22015MR80g:22017
  28. [HRV1] P. de la HARPE, A.G. ROBERTSON, A. VALETTE, On the spectrum of the sum of generators for a finitely generated group, Israel J. of Math., 81, no. 1-2 (1993), 65-96. Zbl0791.43008MR94j:22007
  29. [HRV2] P. de la HARPE, A.G. ROBERTSON, A. VALETTE, On the spectrum of the sum of generators for a finitely generated group II, Colloq. Math., 65 (1993 vol 1), 87-102. Zbl0846.46036MR94j:22008
  30. [HT] R. HOWE and E.C. TAN, Non-Abelian Harmonic Analysis, Springer Verlag, 1992. Zbl0768.43001MR93f:22009
  31. [HV] P. de la HARPE and A. VALETTE, La Propriété (T) de Kazhdan pour les Groupes Localement Compacts, Astérisque 175, Société Math. de France, 1989. Zbl0759.22001
  32. [Ho] R. HOWE, On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, C.I.M.E., (1982), 223-331. 
  33. [Kaz] D.A. KAZHDAN, On a connection between the dual space of a group and the structure of its closed subgroups, Func. Anal. Appl., 1 (1967), 63-65. Zbl0168.27602
  34. [Ke] H. KESTEN, Symmetric random walks on groups, Trans. AMS, 92 (1959), 336-354. Zbl0092.33503MR22 #253
  35. [Kir] A.A. KIRILLOV, Elements of the Theory of Representations, Springer Verlag, New York, 1976. Zbl0342.22001MR54 #447
  36. [KM1] D.Y. KLEINBOCK and G.A. MARGULIS, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Amer. Math., Soc. Transl., Ser. 2, 171 (1996), 141-172. Zbl0843.22027MR96k:22022
  37. [KM2] D.Y. KLEINBOCK and G.A. MARGULIS, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138, no. 3 (1999), 451-494. Zbl0934.22016MR2001i:37046
  38. [Kn] A. KNAPP, Representation Theory of Semisimple Groups, Princeton Univ. Press, 1986. Zbl0604.22001MR87j:22022
  39. [Ko] B. KOSTANT, On the existence and irreducibility of certain series of representations, Bull. AMS, 75 (1969), 627-642. Zbl0229.22026MR39 #7031
  40. [Li] J-S. LI, The minimal decay of matrix coefficients for classical groups, in: Harmonic analysis and its applications in China (1995). Zbl0844.22021
  41. [Lub1] A. LUBOTZKY, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994. Zbl0826.22012MR96g:22018
  42. [Lub2] A. LUBOTZKY, Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem, Ann. of Math., 145 (1997), 441-452. Zbl0885.11037
  43. [LPS] A. LUBOTZKYR. PHILLIPS and P. SARNAK, Hecke operators and distributing points on S2, II, Comm. Pure and Applied Math., 40 (1987), 401-420. Zbl0648.10034MR88m:11025b
  44. [LW] A. LUBOTZKY and B. WEISS, Groups and expanders, in: “Expanding graphs” 95-109, DIMACS series Vol. 10, American Math., Soc., 1993, (Ed: J. Friedman). Zbl0787.05049MR95b:05097
  45. [LZ] J. LI, C.B. ZHU, On the Decay of matrix coefficients for exceptional groups, preprint (1995). Zbl0854.22023
  46. [Mac] G.W. MACKEY, Induced representations of locally compact groups, Ann. of Math., 55 (1952), 101-139. Zbl0046.11601MR13,434a
  47. [Mar] G.A. MARGULIS, Discrete Subgroups of Semisimple Groups, Springer Verlag, 1991. Zbl0732.22008MR92h:22021
  48. [Mo1] C.C. MOORE, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178. Zbl0148.37902MR33 #1409
  49. [Mo2] C.C. MOORE, Exponential decay for correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras and mathematical physics, Conference in honor of G. W. Mackey, MSRI publications (1987), 163-180. Zbl0625.58023MR89d:58102
  50. [Ne] A. NEVO, Spectral transfer and pointwise ergodic theorems for semi-simple groups, preprint. Zbl0942.22007
  51. [Oh] H. OH, Tempered subgroups and representations with minimal decay of matrix coefficients, preprint. Zbl0917.22008
  52. [Sh1] Y. SHALOM, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. of AMS, (1999), 3387-3412. Zbl0932.22007MR99m:22008
  53. [Sh2] Y. SHALOM, Bounded generation and Kazhdan's property (T), IHES Publ. Math., to appear. Zbl0980.22017
  54. [Sh3] Y. SHALOM, Random ergodic theorems, invariant means and unitary representations, Tata Inst. Fund. Res. Stud. Math., 14 (Proceedings of the international conference on Lie groups, Bombay 1996) (1998) 273-314. Zbl0946.22007MR2000i:22006
  55. [Sh4] Y. SHALOM, Rigidity, unitary representations of semisimple groups. and fundamental groups of manifolds with rank one transformation group, Ann. of Math., to appear. Zbl0970.22011
  56. [SW] P.B. SHALEN and P. WAGREICH, Growth rates, ℤp homology, and volumes of hyperbolic 3-manifolds, Trans. AMS, 331, no. 2 (1992), 895-917. Zbl0768.57001MR93d:57002
  57. [Zi] R.J. ZIMMER, Ergodic Theory and Semisimple Groups, Birkhäuser, 1985. Zbl0571.58015
  58. [Zu1] A. ZUK, La propriete (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris, Ser I, 323, no. 5 (1996), 453-458. Zbl0858.22007MR97i:22001
  59. [Zu2] A. ZUK, Property (T) and Kazhdan constants for discrete groups, preprint (1999). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.