Explicit Kazhdan constants for representations of semisimple and arithmetic groups
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 3, page 833-863
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShalom, Yehuda. "Explicit Kazhdan constants for representations of semisimple and arithmetic groups." Annales de l'institut Fourier 50.3 (2000): 833-863. <http://eudml.org/doc/75440>.
@article{Shalom2000,
abstract = {Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property $(T)$. For any such group, $G$, we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice $\Gamma $ in $G$ are obtained, for a “geometric” generating set of the form $\Gamma \cap B_r$, where $B_r \subset G$ is a ball of radius $r$, and the dependence of $r$ on $\Gamma $ is described explicitly. Furthermore, for all rank one Lie groups we derive explicit Kazhdan constants, for any family of representations which admits a spectral gap. Several applications of our methods are discussed as well, among them, an extension of Howe-Moore’s theorem.},
author = {Shalom, Yehuda},
journal = {Annales de l'institut Fourier},
keywords = {semisimple groups; arithmetic groups; lattices; property ; Kazhdan constants; topological group; Kazhdan set},
language = {eng},
number = {3},
pages = {833-863},
publisher = {Association des Annales de l'Institut Fourier},
title = {Explicit Kazhdan constants for representations of semisimple and arithmetic groups},
url = {http://eudml.org/doc/75440},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Shalom, Yehuda
TI - Explicit Kazhdan constants for representations of semisimple and arithmetic groups
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 833
EP - 863
AB - Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property $(T)$. For any such group, $G$, we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice $\Gamma $ in $G$ are obtained, for a “geometric” generating set of the form $\Gamma \cap B_r$, where $B_r \subset G$ is a ball of radius $r$, and the dependence of $r$ on $\Gamma $ is described explicitly. Furthermore, for all rank one Lie groups we derive explicit Kazhdan constants, for any family of representations which admits a spectral gap. Several applications of our methods are discussed as well, among them, an extension of Howe-Moore’s theorem.
LA - eng
KW - semisimple groups; arithmetic groups; lattices; property ; Kazhdan constants; topological group; Kazhdan set
UR - http://eudml.org/doc/75440
ER -
References
top- [Ba] M.W. BALDONI SILVA, Unitary dual of Sp(n, 1), n ≥ 2, Duke Math. Journal, 48 (1981), 549-583. Zbl0496.22019MR83e:22019
- [BaSw] W. BALLMANN and J. SWIATKOWSKI, On L2-cohomology and property (T) for automorphism groups of polyhedral cell complexes, GAFA, 7 (1997), 615-645. Zbl0897.22007MR98m:20043
- [BB] M.W. BALDONI SILVA and D. BARBASCH, The unitary spectrum for real rank one groups, Invent. Math., 72 (1983), 27-55. Zbl0561.22009MR84k:22022
- [Be1] M. E. B. BEKKA, On uniqueness of invariant means, Proc. AMS, 126 (1998), 507-514. Zbl0885.43003MR98d:43002
- [Be2] M. E. B. BEKKA, Restrictions of unitary representations to lattices and associated C*-algebras, J. Funct. Analysis, Vol 143 (1997), 33-41. Zbl0883.22006MR97k:46066
- [BCJ] M. E. B. BEKKA, P-A. CHERIX and P. JOLISSAINT, Kazhdan constants associated with Laplacian on connected Lie groups, J. Lie Theory, 8, no. 1 (1998), 95-110. Zbl0899.22012
- [BS] M. BURGER and P. SARNAK, Ramanujan duals II, Invent. Math., 106, (1991), 1-11. Zbl0774.11021
- [Bur] M. BURGER, Kazhdan constants for SL3(ℤ), J. reine angew. Math., 413 (1991), 36-67. Zbl0704.22009MR92c:22013
- [BM] M. E. B. BEKKA and M. MAYER, On Kazhdan's property (T) and Kazhdan constants associated to a Laplacian for SL (3, ℝ), preprint. Zbl0947.22002
- [BZ] I.N. BERNSTEIN and A.V. ZELEVINSKI, Representations of the group GLn (F) where F is a non-archimedian local field, Russian Math. Surveys, 31 (1976), 1-68. Zbl0348.43007
- [CHH] M. COWLING, U. HAAGERUP and R. HOWE, Almost L2 matrix coefficients, J. reine angew. Math., 387 (1988), 97-110. Zbl0638.22004MR89i:22008
- [CMS] D.I. CARTWRIGHT, W. MLOTKOWSKI, T. STEGER, Property (T) and Ã2 groups, Ann. Inst. Fourier, 44-1 (1994), 213-248. Zbl0792.43002MR95j:20024
- [Co] M. COWLING, Sur les coefficients des representations unitaires des groupes de Lie simples, Lect. Notes in Math, 739 (1979), 132-178. Zbl0417.22010MR81e:22019
- [CS] M. COWLING and T. STEGER, The irreducibility of restrictions of unitary representations to lattices, J. reine angew. Math., 420 (1991), 85-98. Zbl0760.22014MR93e:22019
- [Dix] J. DIXMIER, C*-Algebras, North-Holland, Amsterdam, 1977. Zbl0372.46058
- [DG] Y. DERRIENNIC and Y. GUIVARC'H, Théorème de renouvellement pour les groupes non moyennables, C. R. Acad. Sci. Paris, 277 (1973), A613-A615. Zbl0272.60005MR48 #7332
- [DV] A. DEUTSCH and A. VALETTE, On diameters of orbits of compact groups in unitary representations, J. Austral. Math. Soc., Ser. A, 59 (1995), 308-312. Zbl0853.22004MR96i:22008
- [Ey] P. EYMARD, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. Zbl0169.46403MR37 #4208
- [Fe] J. FELL, Weak containment and induced representations of groups, Canad. J. Math., 14 (1962), 237-268. Zbl0138.07301MR27 #242
- [Fu] H. FURSTENBERG, Random walks and discrete subgroups of Lie groups, in: Advances in Probability Vol. 1, ed. P. Ney, Marcel Dekker INC, New-York, 1971, 2-63. Zbl0221.22008MR44 #1794
- [FS1] A. FURMAN and Y. SHALOM, Sharp ergodic theorems for groups actions and strong ergodicity, Ergodic Theory and Dynamical Systems, 19, no. 4 (1999), 1037-1061. Zbl0947.37002MR2000i:37001
- [FS2] A. FURMAN and Y. SHALOM, Random walks on Hilbert spaces and Lyapunov exponents, in preparation.
- [Gre] F.P. GREENLEAF, Invariant Means on Topological Groups, Van Nostrand, New-York, 1969. Zbl0174.19001MR40 #4776
- [Gro] M. GROMOV, Hyperbolic groups, in: Essays in Group Theory, S. Gersten ed., Springer, 1987, 75-265. Zbl0634.20015MR89e:20070
- [GH] R. GRIGORCHUK and P. de la HARPE, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems, 3 (1997), 51-89. Zbl0949.20033MR98d:20039
- [GV] R. GANGOLLI and V.S. VARADARAJAN, Harmonic Analysis of Spherical Functions in Real Reductive Groups, Springer Verlag, 1988. Zbl0675.43004MR89m:22015
- [HM] R. E. HOWE and C. C. MOORE, Asymptotic properties of unitary representations, J. Func. Anal., 32 (1979), 72-96. Zbl0404.22015MR80g:22017
- [HRV1] P. de la HARPE, A.G. ROBERTSON, A. VALETTE, On the spectrum of the sum of generators for a finitely generated group, Israel J. of Math., 81, no. 1-2 (1993), 65-96. Zbl0791.43008MR94j:22007
- [HRV2] P. de la HARPE, A.G. ROBERTSON, A. VALETTE, On the spectrum of the sum of generators for a finitely generated group II, Colloq. Math., 65 (1993 vol 1), 87-102. Zbl0846.46036MR94j:22008
- [HT] R. HOWE and E.C. TAN, Non-Abelian Harmonic Analysis, Springer Verlag, 1992. Zbl0768.43001MR93f:22009
- [HV] P. de la HARPE and A. VALETTE, La Propriété (T) de Kazhdan pour les Groupes Localement Compacts, Astérisque 175, Société Math. de France, 1989. Zbl0759.22001
- [Ho] R. HOWE, On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, C.I.M.E., (1982), 223-331.
- [Kaz] D.A. KAZHDAN, On a connection between the dual space of a group and the structure of its closed subgroups, Func. Anal. Appl., 1 (1967), 63-65. Zbl0168.27602
- [Ke] H. KESTEN, Symmetric random walks on groups, Trans. AMS, 92 (1959), 336-354. Zbl0092.33503MR22 #253
- [Kir] A.A. KIRILLOV, Elements of the Theory of Representations, Springer Verlag, New York, 1976. Zbl0342.22001MR54 #447
- [KM1] D.Y. KLEINBOCK and G.A. MARGULIS, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Amer. Math., Soc. Transl., Ser. 2, 171 (1996), 141-172. Zbl0843.22027MR96k:22022
- [KM2] D.Y. KLEINBOCK and G.A. MARGULIS, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138, no. 3 (1999), 451-494. Zbl0934.22016MR2001i:37046
- [Kn] A. KNAPP, Representation Theory of Semisimple Groups, Princeton Univ. Press, 1986. Zbl0604.22001MR87j:22022
- [Ko] B. KOSTANT, On the existence and irreducibility of certain series of representations, Bull. AMS, 75 (1969), 627-642. Zbl0229.22026MR39 #7031
- [Li] J-S. LI, The minimal decay of matrix coefficients for classical groups, in: Harmonic analysis and its applications in China (1995). Zbl0844.22021
- [Lub1] A. LUBOTZKY, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994. Zbl0826.22012MR96g:22018
- [Lub2] A. LUBOTZKY, Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem, Ann. of Math., 145 (1997), 441-452. Zbl0885.11037
- [LPS] A. LUBOTZKYR. PHILLIPS and P. SARNAK, Hecke operators and distributing points on S2, II, Comm. Pure and Applied Math., 40 (1987), 401-420. Zbl0648.10034MR88m:11025b
- [LW] A. LUBOTZKY and B. WEISS, Groups and expanders, in: “Expanding graphs” 95-109, DIMACS series Vol. 10, American Math., Soc., 1993, (Ed: J. Friedman). Zbl0787.05049MR95b:05097
- [LZ] J. LI, C.B. ZHU, On the Decay of matrix coefficients for exceptional groups, preprint (1995). Zbl0854.22023
- [Mac] G.W. MACKEY, Induced representations of locally compact groups, Ann. of Math., 55 (1952), 101-139. Zbl0046.11601MR13,434a
- [Mar] G.A. MARGULIS, Discrete Subgroups of Semisimple Groups, Springer Verlag, 1991. Zbl0732.22008MR92h:22021
- [Mo1] C.C. MOORE, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178. Zbl0148.37902MR33 #1409
- [Mo2] C.C. MOORE, Exponential decay for correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras and mathematical physics, Conference in honor of G. W. Mackey, MSRI publications (1987), 163-180. Zbl0625.58023MR89d:58102
- [Ne] A. NEVO, Spectral transfer and pointwise ergodic theorems for semi-simple groups, preprint. Zbl0942.22007
- [Oh] H. OH, Tempered subgroups and representations with minimal decay of matrix coefficients, preprint. Zbl0917.22008
- [Sh1] Y. SHALOM, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. of AMS, (1999), 3387-3412. Zbl0932.22007MR99m:22008
- [Sh2] Y. SHALOM, Bounded generation and Kazhdan's property (T), IHES Publ. Math., to appear. Zbl0980.22017
- [Sh3] Y. SHALOM, Random ergodic theorems, invariant means and unitary representations, Tata Inst. Fund. Res. Stud. Math., 14 (Proceedings of the international conference on Lie groups, Bombay 1996) (1998) 273-314. Zbl0946.22007MR2000i:22006
- [Sh4] Y. SHALOM, Rigidity, unitary representations of semisimple groups. and fundamental groups of manifolds with rank one transformation group, Ann. of Math., to appear. Zbl0970.22011
- [SW] P.B. SHALEN and P. WAGREICH, Growth rates, ℤp homology, and volumes of hyperbolic 3-manifolds, Trans. AMS, 331, no. 2 (1992), 895-917. Zbl0768.57001MR93d:57002
- [Zi] R.J. ZIMMER, Ergodic Theory and Semisimple Groups, Birkhäuser, 1985. Zbl0571.58015
- [Zu1] A. ZUK, La propriete (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris, Ser I, 323, no. 5 (1996), 453-458. Zbl0858.22007MR97i:22001
- [Zu2] A. ZUK, Property (T) and Kazhdan constants for discrete groups, preprint (1999).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.