Property (T) and groups
Donald I. Cartwright; Wojciech Młotkowski; Tim Steger
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 1, page 213-248
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCartwright, Donald I., Młotkowski, Wojciech, and Steger, Tim. "Property (T) and $\overline{A}_2$ groups." Annales de l'institut Fourier 44.1 (1994): 213-248. <http://eudml.org/doc/75056>.
@article{Cartwright1994,
abstract = {We show that each group $\Gamma $ in a class of finitely generated groups introduced in [2] and [3] has Kazhdan’s property (T), and calculate the exact Kazhdan constant of $\Gamma $ with respect to its natural set of generators. These are the first infinite groups shown to have property (T) without making essential use of the theory of representations of linear groups, and the first infinite groups with property (T) for which the exact Kazhdan constant has been calculated. These groups therefore provide answers to (in [9]), p. 133, Questions 1 and 2.},
author = {Cartwright, Donald I., Młotkowski, Wojciech, Steger, Tim},
journal = {Annales de l'institut Fourier},
keywords = {finitely generated groups; Kazhdan’s property (); Kazhdan constant},
language = {eng},
number = {1},
pages = {213-248},
publisher = {Association des Annales de l'Institut Fourier},
title = {Property (T) and $\overline\{A\}_2$ groups},
url = {http://eudml.org/doc/75056},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Cartwright, Donald I.
AU - Młotkowski, Wojciech
AU - Steger, Tim
TI - Property (T) and $\overline{A}_2$ groups
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 1
SP - 213
EP - 248
AB - We show that each group $\Gamma $ in a class of finitely generated groups introduced in [2] and [3] has Kazhdan’s property (T), and calculate the exact Kazhdan constant of $\Gamma $ with respect to its natural set of generators. These are the first infinite groups shown to have property (T) without making essential use of the theory of representations of linear groups, and the first infinite groups with property (T) for which the exact Kazhdan constant has been calculated. These groups therefore provide answers to (in [9]), p. 133, Questions 1 and 2.
LA - eng
KW - finitely generated groups; Kazhdan’s property (); Kazhdan constant
UR - http://eudml.org/doc/75056
ER -
References
top- [1]M. BURGER, Kazhdan constants for SL(3, ℤ), J. reine angew. Math., 413 (1991), 36-67. Zbl0704.22009MR92c:22013
- [2]D.I. CARTWRIGHT, A.M. MANTERO, T. STEGER, A. ZAPPA, Groups acting simply transitively on the vertices of a building of type Ã2 I, Geom. Ded., 47 (1993), 143-166. Zbl0784.51010MR95b:20053
- [3]D.I. CARTWRIGHT, A.M. MANTERO, T. STEGER, A. ZAPPA, Groups acting simply transitively on the vertices of a building of type Ã2 II : the cases q = 2 and q = 3, Geom. Ded., 47 (1993), 167-223. Zbl0784.51011MR95b:20054
- [4]D.I. CARTWRIGHT, W. MLOTKOWSKI, Harmonic analysis for groups acting on triangle buildings, to appear, J. Aust. Math. Soc. Zbl0808.51014
- [5]J.M. COHEN, L. DE MICHELE, The radial Fourier-Stieltjes algebra of free groups, Operator Algebras and Theory Contemporary Mathematics, 10, Am. Math. Soc., Providence (1982), 33-40. Zbl0488.43007MR84j:22006
- [6]M. COWLING and T. STEGER, The irreducibility of restrictions of unitary representations to lattices, J. reine angew. Math., 420 (1991), 85-98. Zbl0760.22014MR93e:22019
- [7]A. FIGƒ-TALAMANCA and M.A. PICARDELLO, Harmonic Analysis on Free Groups, Lect. Notes Pure Appl. Math., 87 (1983). Zbl0536.43001MR85j:43001
- [8]P. DE LA HARPE, A.G. ROBERTSON and A. VALETTE, On the spectrum of the sum of generators for a finitely generated group, Israel J. Math., 81 (1993), 65-96. Zbl0791.43008MR94j:22007
- [9]P. DE LA HARPE and A. VALETTE, La propriété (T) de Kazhdan pour les groupes localment compacts, Astérisque, Soc. Math. France, 175 (1989). Zbl0759.22001
- [10]R. HOWE, ENG CHYE TAN, Non-Abelian Harmonic Analysis, Applications of SL(2, ℝ), Universitext, Springer-Verlag, New York (1992). Zbl0768.43001
- [11]D.R. HUGHES, F.C. PIPER, Projective Planes, Graduate Texts in Mathematics, 6 (1973). Zbl0267.50018MR48 #12278
- [12]A. IOZZI, M.A. PICARDELLO, Spherical functions on symmetric graphs, p. 344-386 in Harmonic Analysis, Lecture Notes in Math. 992, Springer Verlag, Berlin Heidelberg New York (1983). Zbl0535.43005MR85c:43009
- [13]S. LANG, SL2 (ℝ), Graduate Texts in Mathematics 105, Springer Verlag, New York Berlin Tokyo (1985). Zbl0583.22001
- [14]A.M. MANTERO and A. ZAPPA, Spherical functions and spectrum of the Laplacian operators on buildings of rank 2, to appear, Boll. Un. Mat. Ital. Zbl0815.51010
- [15]W. MLOTKOWSKI, Positive Definite Radial Functions on Free Product of Groups, Bollettino Un. Mat. Ital. (7), 2-B (1988), 53-66. Zbl0658.43004MR89g:43005
- [16]I. PAYS and A. VALETTE, Sous-groupes libres dans les groupes d'automorphismes d'arbres, L'Enseignement Mathématique, 37 (1991), 151-174. Zbl0744.20024MR92f:20028
- [17]M. RONAN, Lectures on Buildings, Perspectives in Math., vol. 7., Academic Press, (1989). Zbl0694.51001MR90j:20001
- [18]H.H. SCHAEFER, Banach lattices and positive operators, Grundlehren der Math. Wiss., Springer-Verlag, Berlin, (1974). Zbl0296.47023MR54 #11023
- [19]J. TITS, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math., 386 (1974). Zbl0295.20047MR57 #9866
- [20]J. TITS, Immeubles de type affine in Buildings and the Geometry of Diagrams, Proc. CIME Como 1984 (L.A. Rosati, ed), Lecture Notes in Math., 1181, Springer-Verlag, Berlin (1986), 159-190. Zbl0611.20026
Citations in EuDML Documents
top- Sylvain Barré, Immeubles de Tits triangulaires exotiques
- Sylvain Barré, Sur les polyèdres de rang 2
- Alain Valette, On the Haagerup inequality and groups acting on -buildings
- Alain Valette, Graphes de Ramanujan et applications
- Pierre Pansu, Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles
- Yehuda Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups
- Alain Valette, Nouvelles approches de la propriété (T) de Kazhdan
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.