Quantitative estimates for the Green function and an application to the Bergman metric

Klas Diederich; Gregor Herbort

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 4, page 1205-1228
  • ISSN: 0373-0956

Abstract

top
Let D n be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by G D ( . , . ) . In this article we give for a compact subset K D a quantitative upper bound for the supremum sup z K | G D ( z , w ) | in terms of the boundary distance of K and w . This enables us to prove that, on a smooth bounded regular domain D (in the sense of Diederich-Fornaess), the Bergman differential metric B D ( w ; X ) tends to infinity, for X n / { O } , when w D tends to a boundary point. Furthermore, we prove that the order of growth of B D ( W ; . ) under nontangential approach of w D to a point z 0 D of finite type, can be estimated from below by 1 N , where N denotes the order of pseudoconvex extendability of D at z 0 .

How to cite

top

Diederich, Klas, and Herbort, Gregor. "Quantitative estimates for the Green function and an application to the Bergman metric." Annales de l'institut Fourier 50.4 (2000): 1205-1228. <http://eudml.org/doc/75454>.

@article{Diederich2000,
abstract = {Let $D\subset \{\Bbb C\}^n$ be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by $G_D(.,.)$. In this article we give for a compact subset $K\subset D$ a quantitative upper bound for the supremum $\sup _\{z\in K\}\vert G_D(z,w)\vert $ in terms of the boundary distance of $K$ and $w$. This enables us to prove that, on a smooth bounded regular domain $D$ (in the sense of Diederich-Fornaess), the Bergman differential metric $B_D(w;X)$ tends to infinity, for $X\in \{\Bbb C\}^n/\lbrace O\rbrace $, when $w\in D$ tends to a boundary point. Furthermore, we prove that the order of growth of $B_D(W;.)$ under nontangential approach of $w\in D$ to a point $z^0\in \partial D$ of finite type, can be estimated from below by $1\backslash N$, where $N$ denotes the order of pseudoconvex extendability of $\partial D$ at $z^0$.},
author = {Diederich, Klas, Herbort, Gregor},
journal = {Annales de l'institut Fourier},
keywords = {pluricomplex Green function; Monge-Ampère equation; order of pseudoconvex extendability; Bergman metric},
language = {eng},
number = {4},
pages = {1205-1228},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quantitative estimates for the Green function and an application to the Bergman metric},
url = {http://eudml.org/doc/75454},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Diederich, Klas
AU - Herbort, Gregor
TI - Quantitative estimates for the Green function and an application to the Bergman metric
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1205
EP - 1228
AB - Let $D\subset {\Bbb C}^n$ be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by $G_D(.,.)$. In this article we give for a compact subset $K\subset D$ a quantitative upper bound for the supremum $\sup _{z\in K}\vert G_D(z,w)\vert $ in terms of the boundary distance of $K$ and $w$. This enables us to prove that, on a smooth bounded regular domain $D$ (in the sense of Diederich-Fornaess), the Bergman differential metric $B_D(w;X)$ tends to infinity, for $X\in {\Bbb C}^n/\lbrace O\rbrace $, when $w\in D$ tends to a boundary point. Furthermore, we prove that the order of growth of $B_D(W;.)$ under nontangential approach of $w\in D$ to a point $z^0\in \partial D$ of finite type, can be estimated from below by $1\backslash N$, where $N$ denotes the order of pseudoconvex extendability of $\partial D$ at $z^0$.
LA - eng
KW - pluricomplex Green function; Monge-Ampère equation; order of pseudoconvex extendability; Bergman metric
UR - http://eudml.org/doc/75454
ER -

References

top
  1. [1] Z. BLOCKI, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., 41 (1993), 151-157. Zbl0795.32003MR97j:32009
  2. [2] Z. BLOCKI, P. PFLUG, Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225. Zbl0916.32016MR2000b:32065
  3. [3] M. CARLEHED, Comparison of the pluricomplex and the classical Green functions, Michigan Math. J., 45 (1998), 399-407. Zbl0960.32021MR99e:32019
  4. [4] M. CARLEHED, U. CEGRELL, F. WIKSTRÖM, Jensen measures, hyperconvexity, and boundary behavior of the pluricomplex Green's function, Ann. Pol. Math., 71 (1999), 87-103. Zbl0955.32034
  5. [5] J. P. DEMAILLY, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., 194 (1987), 519-564. Zbl0595.32006MR88g:32034
  6. [6] K. DIEDERICH, J. E. FORNÆSS, Pseudoconvex domains : Bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39 (1977), 129-141. Zbl0353.32025MR55 #10728
  7. [7] K. DIEDERICH, J. E. FORNÆSS, Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. Zbl0378.32014MR57 #16696
  8. [8] K. DIEDERICH, G. HERBORT, Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis 3 (1993), 237-267. Zbl0786.32016MR94m:32033
  9. [9] K. DIEDERICH, G. HERBORT, Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (H. Skoda, J. M. Trépreau, ed.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. Zbl0845.32019MR96b:32019
  10. [10] K. DIEDERICH, T. OHSAWA, An estimate on the Bergman distance on pseudoconvex domains, Ann. of Math., 141 (1995), 181-190. Zbl0828.32002MR95j:32039
  11. [11] I. GRAHAM, Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in ℂn with smooth boundary, Trans. Amer. Math. Soc., 207 (1975), 219-240. Zbl0305.32011MR51 #8468
  12. [12] G. HERBORT, The Bergman metric on hyperconvex domains, Math. Zeit., 232 (1999), 183-196. Zbl0933.32048MR2000i:32020
  13. [13] G. HERBORT, On the pluricomplex Green function on pseudoconvex domains with a smooth boundary, Internat. J. of Math. (To appear). Zbl1110.32307
  14. [14] L. HÖRMANDER, An introduction to complex analysis in several variables, North Holland, Amsterdam, 2nd ed. ed., 1973. Zbl0271.32001
  15. [15] M. KLIMEK, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240. Zbl0584.32037MR87d:32032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.