A comparative analysis of Bernstein type estimates for the derivative of multivariate polynomials
We compare the yields of two methods to obtain Bernstein type pointwise estimates for the derivative of a multivariate polynomial in a domain where the polynomial is assumed to have sup norm at most 1. One method, due to Sarantopoulos, relies on inscribing ellipses in a convex domain K. The other, pluripotential-theoretic approach, mainly due to Baran, works for even more general sets, and uses the pluricomplex Green function (the Zaharjuta-Siciak extremal function). When the inscribed ellipse method...