Extremal plurisubharmonic functions and invariant pseudodistances

M. Klimek

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 231-240
  • ISSN: 0037-9484

How to cite


Klimek, M.. "Extremal plurisubharmonic functions and invariant pseudodistances." Bulletin de la Société Mathématique de France 113 (1985): 231-240. <http://eudml.org/doc/87482>.

author = {Klimek, M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {extremal plurisubharmonic function; complex Monge-Ampère equation; Carathéodory-Kobayashi pseudodistance; generalized Green's function; Lindelöf property of Green’s functions},
language = {eng},
pages = {231-240},
publisher = {Société mathématique de France},
title = {Extremal plurisubharmonic functions and invariant pseudodistances},
url = {http://eudml.org/doc/87482},
volume = {113},
year = {1985},

AU - Klimek, M.
TI - Extremal plurisubharmonic functions and invariant pseudodistances
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 231
EP - 240
LA - eng
KW - extremal plurisubharmonic function; complex Monge-Ampère equation; Carathéodory-Kobayashi pseudodistance; generalized Green's function; Lindelöf property of Green’s functions
UR - http://eudml.org/doc/87482
ER -


  1. [1] BEDFORD (E.) and TAYLOR (B. A.). — The Dirichlet problem for a complex Monge-Ampere equation, Invent Math. Vol. 37, 1976, pp. 1-44. Zbl0315.31007MR56 #3351
  2. [2] BEDFORD (E.) and TAYLOR (B. A.). — A new capacity for plurisubharmonic functions. Acta Mathematica. Vol. 149, 1982, pp. 1-41. Zbl0547.32012MR84d:32024
  3. [3] FRANZON (T.) and VESENTINI (E.). — Holomorphic maps and invariant distances. North-Holland Mathematics Studies 40. North-Holland. 1980. Zbl0447.46040
  4. [4] A T T (L. L.). — Introduction to potential theory, Wiley Interscience. New York, 1969. Zbl0188.17203
  5. [5] HERVE (M.). — Lindelöfs principle in infinite dimensions, Lecture Notes in Mathematics, Vol. 364, 1974, pp. 41-57. Zbl0272.58003MR52 #14396
  6. [6] KERZMAN (N.) et ROSAY (J. P.). — Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut, Math Ann., Vol. 257, 1981, p. 171-184. Zbl0451.32012MR83g:32019
  7. [7] KLIMEK (M.). — Extremal plurisubharmonic functions and L-regular sets in Cn, Proc. Royal Irish Acad., Vol. 82 A, 1982, pp. 217-230. Zbl0494.32005MR84f:32019
  8. [8] KOBAYASHI, (S.). — Hyperbolic manifolds and holomorphic mappings, Marcel Dekker Inc., New York, 1970. Zbl0207.37902MR43 #3503
  9. [9] LEMPERT (L.). — La metrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. Fr., Vol. 109, 1981, pp. 427-474. Zbl0492.32025MR84d:32036
  10. [10] LEMPERT (L.). — Holomorphic retracts and intrinsic metrics in convex domains, Analysis Mathematica, Vol. 8, 1982, pp. 257-261. Zbl0509.32015MR84f:32026
  11. [11] PLESNIAK (W.). — Sur la L-régularité des compacts de Cn, Polycopié de la Faculté des Sciences de Toulouse, U.E.R. de Math., Toulouse, 1980. 
  12. [12] ROBINSON (R. M.). — Analytic functions in circular rings, Duke Math. J. Vol. 10, 1943, pp. 341-354. Zbl0060.21804MR4,241g
  13. [13] SICIAK (J.). — Extremal plurisubharmonic functions in Cn, Ann. Polon. Math., Vol. 39, 1981, p. 175-211. Zbl0477.32018MR83e:32018
  14. [14] SIMHA (R. R.). — The Caratheodory metric of the annulus, Proc. Amer. Math. Soc., Vol. 50, 1975, p. 162-166. Zbl0281.30010MR52 #736

Citations in EuDML Documents

  1. Nikolai Nikolov, Behavior of invariant metrics near convexifiable boundary points
  2. Urban Cegrell, The symmetric pluricomplex Green function
  3. Kazuo Azukawa, The ratio of invariant metrics on the annulus and theta functions
  4. Klas Diederich, Gregor Herbort, Quantitative estimates for the Green function and an application to the Bergman metric
  5. Peter Pflug, Włodzimierz Zwonek, Effective formulas for invariant functions - case of elementary Reinhardt domains
  6. J.-P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques
  7. Jean-Pierre Demailly, Fonction de Green pluricomplexe et mesures pluriharmoniques
  8. E. Bedford, B. A. Taylor, Plurisubharmonic functions with logarithmic singularities
  9. Maciej Klimek, Invariant pluricomplex Green functions
  10. Marek Jarnicki, Peter Pflug, Invariant pseudodistances and pseudometrics - completeness and product property

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.