Fefferman's SAK principle in one dimension

Frédéric Hérau

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 4, page 1229-1264
  • ISSN: 0373-0956

Abstract

top
In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if a and b are symbols in S 1 , 0 2 such that | a | b , then for all ϵ > 0 we have the estimate a w u s 2 C ϵ ( b w u s 2 + u s + ϵ 2 ) for all u in the Schwartz space, where t is the usual H t norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.

How to cite

top

Hérau, Frédéric. "Fefferman's SAK principle in one dimension." Annales de l'institut Fourier 50.4 (2000): 1229-1264. <http://eudml.org/doc/75455>.

@article{Hérau2000,
abstract = {In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if $a$ and $b$ are symbols in $S^2_\{1,0\}$ such that $\vert a\vert \le b$, then for all $\epsilon &gt;0$ we have the estimate $\Vert a^wu\Vert ^2_s\le C_\epsilon (\Vert b^wu\Vert ^2_s +\Vert u\Vert ^2_\{s+\epsilon \})$ for all $u$ in the Schwartz space, where $\Vert \;\Vert _t$ is the usual $H_t$ norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.},
author = {Hérau, Frédéric},
journal = {Annales de l'institut Fourier},
keywords = {pseudo-differential operators; microlocal analysis; uncertainty principle; Weyl-Hörmander calculus; Gårding inequality; Fefferman-Phong inequality; SAK principle},
language = {eng},
number = {4},
pages = {1229-1264},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fefferman's SAK principle in one dimension},
url = {http://eudml.org/doc/75455},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Hérau, Frédéric
TI - Fefferman's SAK principle in one dimension
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1229
EP - 1264
AB - In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if $a$ and $b$ are symbols in $S^2_{1,0}$ such that $\vert a\vert \le b$, then for all $\epsilon &gt;0$ we have the estimate $\Vert a^wu\Vert ^2_s\le C_\epsilon (\Vert b^wu\Vert ^2_s +\Vert u\Vert ^2_{s+\epsilon })$ for all $u$ in the Schwartz space, where $\Vert \;\Vert _t$ is the usual $H_t$ norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.
LA - eng
KW - pseudo-differential operators; microlocal analysis; uncertainty principle; Weyl-Hörmander calculus; Gårding inequality; Fefferman-Phong inequality; SAK principle
UR - http://eudml.org/doc/75455
ER -

References

top
  1. [1] J.-M. BONY and J.-Y. CHEMIN, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122, no. 1 (1994), 77-118. Zbl0798.35172MR95a:35152
  2. [2] J.-M. BONY and N. LERNER, Quantification asymptotique et microlocalisations d'ordre supérieur. I, Ann. Sci. École Norm. Sup. (4), 22 (1989), 377-433. Zbl0753.35005MR90k:35276
  3. [3] J.V. EGOROV, The canonical transformations of pseudo-differential operators, Uspehi Mat. Nauk, 24, no. 5 (1969), 235-236. Zbl0191.43802
  4. [4] C. FEFFERMAN, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.), 9, no. 2 (1983), 129-206. Zbl0526.35080MR85f:35001
  5. [5] C. FEFFERMAN and D.H. PHONG, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 75, no. 10 (1978), 4673-4674. Zbl0391.35062MR80b:47064
  6. [6] C. FEFFERMAN and D.H. PHONG, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math., 34, no. 3 (1981), 285-331. Zbl0458.35099MR82j:35140
  7. [7] A. GRIGIS and J. SJÖSTRAND, Microlocal analysis for differential operators, an introduction, Cambridge University Press, Cambridge, 1994. Zbl0804.35001
  8. [8] D. GUIBOURG, Inégalités maximales pour l'opérateur de Schrödinger, Thèse, Université de Rennes 1, 1992. Zbl0783.35013
  9. [9] B. HELFFER and J. NOURRIGAT, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Birkhäuser Boston Inc., Boston, Mass., 1985. Zbl0568.35003MR88i:35029
  10. [10] L. HÖRMANDER, The analysis of linear partial differential operators I, Springer-Verlag, Berlin, 1985. Zbl0601.35001
  11. [11] L. HÖRMANDER, The analysis of linear partial differential operators III, Springer-Verlag, Berlin, 1985. Zbl0601.35001
  12. [12] N. LERNER and J. NOURRIGAT, Lower bounds for pseudo-differential operators, Ann. Inst. Fourier (Grenoble), 40, no. 3 (1990), 657-682. Zbl0703.35182MR92a:35172
  13. [13] B. MALGRANGE, The preparation theorem for differentiable functions, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London (1964), 203-208. Zbl0137.03601MR32 #178
  14. [14] A. MOHAMED and J. NOURRIGAT, Encadrement du N(λ) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique, J. Math. Pures Appl. (9), 70, no. 1 (1991), 87-99. Zbl0725.35068MR92a:35122
  15. [15] Z. SHEN, Estimates in Lp for magnetic Schrödinger operators, Indiana Univ. Math. J., 45, no. 3 (1996), 817-841. Zbl0880.35034MR97k:35043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.