Fefferman's SAK principle in one dimension
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 4, page 1229-1264
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHérau, Frédéric. "Fefferman's SAK principle in one dimension." Annales de l'institut Fourier 50.4 (2000): 1229-1264. <http://eudml.org/doc/75455>.
@article{Hérau2000,
abstract = {In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if $a$ and $b$ are symbols in $S^2_\{1,0\}$ such that $\vert a\vert \le b$, then for all $\epsilon >0$ we have the estimate $\Vert a^wu\Vert ^2_s\le C_\epsilon (\Vert b^wu\Vert ^2_s +\Vert u\Vert ^2_\{s+\epsilon \})$ for all $u$ in the Schwartz space, where $\Vert \;\Vert _t$ is the usual $H_t$ norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.},
author = {Hérau, Frédéric},
journal = {Annales de l'institut Fourier},
keywords = {pseudo-differential operators; microlocal analysis; uncertainty principle; Weyl-Hörmander calculus; Gårding inequality; Fefferman-Phong inequality; SAK principle},
language = {eng},
number = {4},
pages = {1229-1264},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fefferman's SAK principle in one dimension},
url = {http://eudml.org/doc/75455},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Hérau, Frédéric
TI - Fefferman's SAK principle in one dimension
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1229
EP - 1264
AB - In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if $a$ and $b$ are symbols in $S^2_{1,0}$ such that $\vert a\vert \le b$, then for all $\epsilon >0$ we have the estimate $\Vert a^wu\Vert ^2_s\le C_\epsilon (\Vert b^wu\Vert ^2_s +\Vert u\Vert ^2_{s+\epsilon })$ for all $u$ in the Schwartz space, where $\Vert \;\Vert _t$ is the usual $H_t$ norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.
LA - eng
KW - pseudo-differential operators; microlocal analysis; uncertainty principle; Weyl-Hörmander calculus; Gårding inequality; Fefferman-Phong inequality; SAK principle
UR - http://eudml.org/doc/75455
ER -
References
top- [1] J.-M. BONY and J.-Y. CHEMIN, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122, no. 1 (1994), 77-118. Zbl0798.35172MR95a:35152
- [2] J.-M. BONY and N. LERNER, Quantification asymptotique et microlocalisations d'ordre supérieur. I, Ann. Sci. École Norm. Sup. (4), 22 (1989), 377-433. Zbl0753.35005MR90k:35276
- [3] J.V. EGOROV, The canonical transformations of pseudo-differential operators, Uspehi Mat. Nauk, 24, no. 5 (1969), 235-236. Zbl0191.43802
- [4] C. FEFFERMAN, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.), 9, no. 2 (1983), 129-206. Zbl0526.35080MR85f:35001
- [5] C. FEFFERMAN and D.H. PHONG, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 75, no. 10 (1978), 4673-4674. Zbl0391.35062MR80b:47064
- [6] C. FEFFERMAN and D.H. PHONG, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math., 34, no. 3 (1981), 285-331. Zbl0458.35099MR82j:35140
- [7] A. GRIGIS and J. SJÖSTRAND, Microlocal analysis for differential operators, an introduction, Cambridge University Press, Cambridge, 1994. Zbl0804.35001
- [8] D. GUIBOURG, Inégalités maximales pour l'opérateur de Schrödinger, Thèse, Université de Rennes 1, 1992. Zbl0783.35013
- [9] B. HELFFER and J. NOURRIGAT, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Birkhäuser Boston Inc., Boston, Mass., 1985. Zbl0568.35003MR88i:35029
- [10] L. HÖRMANDER, The analysis of linear partial differential operators I, Springer-Verlag, Berlin, 1985. Zbl0601.35001
- [11] L. HÖRMANDER, The analysis of linear partial differential operators III, Springer-Verlag, Berlin, 1985. Zbl0601.35001
- [12] N. LERNER and J. NOURRIGAT, Lower bounds for pseudo-differential operators, Ann. Inst. Fourier (Grenoble), 40, no. 3 (1990), 657-682. Zbl0703.35182MR92a:35172
- [13] B. MALGRANGE, The preparation theorem for differentiable functions, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London (1964), 203-208. Zbl0137.03601MR32 #178
- [14] A. MOHAMED and J. NOURRIGAT, Encadrement du N(λ) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique, J. Math. Pures Appl. (9), 70, no. 1 (1991), 87-99. Zbl0725.35068MR92a:35122
- [15] Z. SHEN, Estimates in Lp for magnetic Schrödinger operators, Indiana Univ. Math. J., 45, no. 3 (1996), 817-841. Zbl0880.35034MR97k:35043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.