Homogeneous fibered and quantizable dynamical systems

Norman E. Hurt

Annales de l'I.H.P. Physique théorique (1972)

  • Volume: 16, Issue: 3, page 219-222
  • ISSN: 0246-0211

How to cite

top

Hurt, Norman E.. "Homogeneous fibered and quantizable dynamical systems." Annales de l'I.H.P. Physique théorique 16.3 (1972): 219-222. <http://eudml.org/doc/75736>.

@article{Hurt1972,
author = {Hurt, Norman E.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {219-222},
publisher = {Gauthier-Villars},
title = {Homogeneous fibered and quantizable dynamical systems},
url = {http://eudml.org/doc/75736},
volume = {16},
year = {1972},
}

TY - JOUR
AU - Hurt, Norman E.
TI - Homogeneous fibered and quantizable dynamical systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1972
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 219
EP - 222
LA - eng
UR - http://eudml.org/doc/75736
ER -

References

top
  1. [1] A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes (C. R. Acad. Sc., Paris, t. 230, 1950, p. 1662-1664). Zbl0041.52203MR34768
  2. [2] A. Borel, Some remarks about transformation groups transitive on spheres and tori (Bull. Amer. Math. Soc., vol. 55, 1949, p. 580-587). Zbl0034.01603MR29915
  3. [3] A. Borel, Les bouts des espaces homogènes des groupes de Lie (Ann. of Math., vol. 58, 1953, p. 443-457). Zbl0053.13002MR57263
  4. [4] A. Borel et al., Seminar on Transformation Groups (Ann. of Math., Studies, 46, 1961). Zbl0091.37202MR116341
  5. [5] G. Bredon, On homogeneous cohomology sphères (Ann. of Math., vol. 73, 1961, p. 556-565). Zbl0102.38701MR122911
  6. [6] N.E. Hurt, Topology of Quantizable Dynamical Systems and the Algebra of of Observables (Ann. Inst. H. Poincaré, vol. 16, 1972, p. 203-217). Zbl0239.58012MR303019
  7. [7] N.E. Hurt, Examples in Quantizable dynamical systems (Lettere al Nuovo Cimento, vol. 3, 1970, p. 137-138). 
  8. [8] Y. Matsushima, On a type of subgroups of compact Lie groups (Nagoya Math. J., vol. 2, 1951, p. 1-15). Zbl0042.25901MR40308
  9. [9] D. Montgomery and H. Samelson, Transformation groups on spheres (Ann. of Math., vol. 44, 1943, p. 454-470). Zbl0063.04077MR8817
  10. [10] J. Poncet, Groupes de Lie compacts... (Comm. Math. Helv., vol. 33, 1959, p. 109-120). Zbl0084.19006MR103946
  11. [11] J.C. Su, Transformation groups on cohomology projective spaces (Trans. Amer. Math. Soc., vol. 106, 1963, p. 305-318). Zbl0109.41501MR143839
  12. [12] H.C. Wang, One dimensional cohomology groups of locally compact metrically homogeneous spaces (Duke Math. J., vol. 19, 1952, p. 303-309). Zbl0049.23904MR47672
  13. [13] J.A. Wolf, Spaces of Constant Curvature, Mc Graw-Hill, Inc., New York, 1967. Zbl0162.53304MR217740
  14. [14] C.T. Yang, The Triangulability of the orbit space of a differentiable transformation group (Bull. Amer. Math. Soc., vol. 69, 1963, p. 405-408). Zbl0114.14502MR146291

NotesEmbed ?

top

You must be logged in to post comments.