Homogeneous fibered and quantizable dynamical systems

Norman E. Hurt

Annales de l'I.H.P. Physique théorique (1972)

  • Volume: 16, Issue: 3, page 219-222
  • ISSN: 0246-0211

How to cite

top

Hurt, Norman E.. "Homogeneous fibered and quantizable dynamical systems." Annales de l'I.H.P. Physique théorique 16.3 (1972): 219-222. <http://eudml.org/doc/75736>.

@article{Hurt1972,
author = {Hurt, Norman E.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {219-222},
publisher = {Gauthier-Villars},
title = {Homogeneous fibered and quantizable dynamical systems},
url = {http://eudml.org/doc/75736},
volume = {16},
year = {1972},
}

TY - JOUR
AU - Hurt, Norman E.
TI - Homogeneous fibered and quantizable dynamical systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1972
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 219
EP - 222
LA - eng
UR - http://eudml.org/doc/75736
ER -

References

top
  1. [1] A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes (C. R. Acad. Sc., Paris, t. 230, 1950, p. 1662-1664). Zbl0041.52203MR34768
  2. [2] A. Borel, Some remarks about transformation groups transitive on spheres and tori (Bull. Amer. Math. Soc., vol. 55, 1949, p. 580-587). Zbl0034.01603MR29915
  3. [3] A. Borel, Les bouts des espaces homogènes des groupes de Lie (Ann. of Math., vol. 58, 1953, p. 443-457). Zbl0053.13002MR57263
  4. [4] A. Borel et al., Seminar on Transformation Groups (Ann. of Math., Studies, 46, 1961). Zbl0091.37202MR116341
  5. [5] G. Bredon, On homogeneous cohomology sphères (Ann. of Math., vol. 73, 1961, p. 556-565). Zbl0102.38701MR122911
  6. [6] N.E. Hurt, Topology of Quantizable Dynamical Systems and the Algebra of of Observables (Ann. Inst. H. Poincaré, vol. 16, 1972, p. 203-217). Zbl0239.58012MR303019
  7. [7] N.E. Hurt, Examples in Quantizable dynamical systems (Lettere al Nuovo Cimento, vol. 3, 1970, p. 137-138). 
  8. [8] Y. Matsushima, On a type of subgroups of compact Lie groups (Nagoya Math. J., vol. 2, 1951, p. 1-15). Zbl0042.25901MR40308
  9. [9] D. Montgomery and H. Samelson, Transformation groups on spheres (Ann. of Math., vol. 44, 1943, p. 454-470). Zbl0063.04077MR8817
  10. [10] J. Poncet, Groupes de Lie compacts... (Comm. Math. Helv., vol. 33, 1959, p. 109-120). Zbl0084.19006MR103946
  11. [11] J.C. Su, Transformation groups on cohomology projective spaces (Trans. Amer. Math. Soc., vol. 106, 1963, p. 305-318). Zbl0109.41501MR143839
  12. [12] H.C. Wang, One dimensional cohomology groups of locally compact metrically homogeneous spaces (Duke Math. J., vol. 19, 1952, p. 303-309). Zbl0049.23904MR47672
  13. [13] J.A. Wolf, Spaces of Constant Curvature, Mc Graw-Hill, Inc., New York, 1967. Zbl0162.53304MR217740
  14. [14] C.T. Yang, The Triangulability of the orbit space of a differentiable transformation group (Bull. Amer. Math. Soc., vol. 69, 1963, p. 405-408). Zbl0114.14502MR146291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.