Topology of quantizable dynamical systems and the algebra of observables
Annales de l'I.H.P. Physique théorique (1972)
- Volume: 16, Issue: 3, page 203-217
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHurt, Norman E.. "Topology of quantizable dynamical systems and the algebra of observables." Annales de l'I.H.P. Physique théorique 16.3 (1972): 203-217. <http://eudml.org/doc/75735>.
@article{Hurt1972,
author = {Hurt, Norman E.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {203-217},
publisher = {Gauthier-Villars},
title = {Topology of quantizable dynamical systems and the algebra of observables},
url = {http://eudml.org/doc/75735},
volume = {16},
year = {1972},
}
TY - JOUR
AU - Hurt, Norman E.
TI - Topology of quantizable dynamical systems and the algebra of observables
JO - Annales de l'I.H.P. Physique théorique
PY - 1972
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 203
EP - 217
LA - eng
UR - http://eudml.org/doc/75735
ER -
References
top- [1] J.F. Adams, On the nonexistence of elements of Hopf invariant one (Ann. of Math., vol. 72, 1960. p. 20-104). Zbl0096.17404MR141119
- [2] J. Adem, Relations on iterated reduced powers (Proc. Nat. Acad. Sci. U. S. A., vol. 39, 1953, p. 636-638). Zbl0052.19101MR56293
- [3] A.C. Allamigeon, Propriétés globales des espaces de Riemann harmoniques (Ann. Inst. Fourier, t. 15, 1965, p. 91-132). Zbl0178.55903MR198391
- [4] R.L. Bishop and S.I. Goldberg, Rigidity of positively curved Kähler manifolds (Proc. Nat. Acad. Sci. U. S. A., vol. 54, 1965, p. 1037-1041); On the second cohomology group of a Kähler manifold of positive sectional curvature (Proc. Amer. Math. Soc., vol. 16, 1965, p. 119-122). Zbl0129.35801MR195112
- [5] D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds (J. Diff. Geom., vol. 1, 1967, p. 347-354). Zbl0163.43902MR226539
- [6] D. Bohm, B.J. Hiley and A.E.G. Stuart, Inter. J. Theor. Phys., 3, 1970, p. 171; B.J. Hiley and A.E.G. Stuart, Phase Space, Fibre bundles and current algebras (Inter. J. Theor. Phys., vol. 4, 1971, p. 247-265). MR378605
- [7] W.M. Boothby and H.C. Wang, On contact manifolds (Ann. of Math., vol. 68, 1968, p. 721-734). Zbl0084.39204MR112160
- [8] R. Bott, On manifolds all of whose geodesics are closed (Ann. of Math., 60, 1954, p. 375-382). Zbl0058.15604MR73993
- [9] W. Browder, Surgery and the theory of differentiable transformation groups (Proceedings of the Conference on Transformation groups) (Springer-Verlag, 1968), p. 1-46. Zbl0177.51902MR261629
- [10] E. Cartan, Sur les variétés à connexion projective (Bull. Soc. math. Fr., t. 52, 1924, p. 205-241). Zbl50.0500.02MR1504846JFM50.0500.02
- [11] P. Dazord, Variétés finslériennes à géodésiques fermées (C. R. Acad. Sc., Paris, t. 266, série A, p. 348-350; Propriétés globales des géodésiques des espaces Finsler (Thesis, 1969). Zbl0157.52304MR230266
- [12] J. Eells and N. Kuiper, Manifolds which are like projective planes (Public. Math. I. H. E. S., vol. 14, 1962, p. 5-46). Zbl0109.15701MR145544
- [13] A. Gleason, Spaces with a compact Lie group of transformations (Proc. Amer. Math. Soc., vol. 1, 1950, p. 35-43). Zbl0041.36207MR33830
- [14] S.I. Goldberg, Rigidity of positively curved contact manifolds (J. London Math. Soc., vol. 42, 1967, p. 257-263). Zbl0147.40802MR232325
- [15] S.I. Goldberg, On the topology of compact contact manifolds (Tohoku Math. J., vol. 20, 1968, p. 106-110). Zbl0174.53404MR229176
- [16] R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables (Prentice-Hall, Englewood Cliffs, 1965). Zbl0141.08601MR180696
- [17] M. Harada, On the curvature of Sasakian manifolds (Bull. Yamagata Univ., vol. 7, 1969, p. 97-106). MR261493
- [18] M. Harada, On the minimal diameter of Sasakian manifolds (Ibid., vol. 7, No. 3, 1970, p. 191-203). MR303466
- [19] W.C. Hsiang, A note on free differentiable actions of S1 and S3 on homotopy spheres (Ann. of Math., vol. 83, 1966, p. 266-272). Zbl0137.17802MR192506
- [20] W.C. Hsiang and W.Y. Hsiang, Some free differentiable actions on 11-spheres (Quart. J. Math., vol. 15, 1964, p. 371-374). Zbl0125.40201MR173266
- [21] S.T. Hu, Homotopy Theory (Academic Press, New York, 1959). Zbl0088.38803MR106454
- [22] N.E. Hurt, Remarks on Canonical Quantization (Il Nuovo Cimento, vol. 55 A, 1968, p. 534-542). Zbl0163.46501
- [23] N.E. Hurt, Remarks on Morse Theory in Canonical Quantization (J. Math. Phys., vol. 11, 1970, p. 539-551). MR482882
- [24] N.E. Hurt, Examples in Quantizable Dynamical Systems, II (Lettere al Nuovo Cimento, vol. 3, 1970, p. 137-138).
- [25] N.E. Hurt, Differential Geometry of Canonical Quantization (Ann. Inst. H. Poincaré, vol. XIV, No.2, 1971, p. 153-170). Zbl0211.54003MR296982
- 26] N.E. Hurt, A classification theory of quantizable dynamical systems (Report on Math. Phys., vol. 2, 1971, p. 211-220). Zbl0224.53021MR322902
- [27] M. Kervaire, A manifold which does not admit any differentiable structure (Comm. Math. Helv., vol. 34, 1960, p. 257-270). Zbl0145.20304MR139172
- [28] M. Kervaire and J.W. Milnor, Groups of Homotopy Spheres, I (Ann. of Math., vol. 77, 1963), p. 504-537). Zbl0115.40505MR148075
- [29] W. Klingenberg, Manifolds with restricted conjugate locus (Ann. of Math., vol. 78, 1963, p. 527-547). Zbl0117.38701MR159289
- [30] K. Kodaira, On Kähler varieties of restricted type (Ann. of Math., vol., 60, 1954, p. 28-48). Zbl0057.14102MR68871
- [31] R. Lee, Nonexistence of Free differentiable actions of S1 and Z2 on Homotopy spheres, [9], p. 208-209. Zbl0172.48401MR245040
- [32] G. Mackey, Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963). Zbl0114.44002
- [33] J. Milnor, On manifolds homeomorphic to the 7-sphere (Ann. of Math., vol. 64, 1956, p. 399-405). Zbl0072.18402MR82103
- [34] J. Milnor, On the existence of a connection with curvature zero (Comm. Math. Helv., vol. 32, 1957, p. 215-223). Zbl0196.25101MR95518
- [35] C.W. Misner and J.A. Wheeler, Gravitation, Electromagnetism Unquantized Charge, and Mass as properties of curved empty space (Ann. of Phys., vol. 2, 1957, p. 525-660). Zbl0078.19106MR93387
- [36] D. Montgomery and C.T. Yang, Differentiable Actions on homotopy seven sphere, I (Trans Amer. Math. Soc., vol. 122, 1966, p. 480-498). Zbl0138.18703MR200934
- [37] D. Montgomery and C.T. Yang, Differentiable Actions on homotopy seven sphere, II, [9], p. 125-133. Zbl0177.51903MR245041
- [38] J.R. Munkres, Obstructions to smoothing a piecewise differentiable homeomorphism (Ann. of Math., vol. 72, 1960, p. 521-554). Zbl0108.18101MR121804
- [39] J.R. Munkres, Elementary Differential Topology (Princeton University Press, 1966). Zbl0161.20201MR198479
- [40] H. Nakagawa, A note on theorems of Bott and Samelson (J. Math. of Kyoto Univ., vol., 7, 1967, p. 205-220); Riemannian manifolds with many geodesic loops (J. Math. Soc. Japan, vol. 20, 1968, p. 648-654). Zbl0162.53502MR225339
- [41] G. Reeb, Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques (Mém. Acad. roy. Belgique, Cl. Sc., vol. 27, n° 9, 1952, p. 1-64). Zbl0048.32903MR58202
- [42] G. Reeb, Trois problèmes de la théory des systèmes dynamique, (Colloq. Géom. Diff. Global) (C. B. R. M., 1958), p. 89-94. Zbl0095.29002MR121808
- [43] H. Samelson, On manifolds with many closed geodesics (Portugaliae Math., vol. 22, 1963, p. 193-196). Zbl0134.17704MR230256
- [44] S. Smale, Generalized Poincaré conjecture in dimensions greater than four (Ann. of Math., vol. 74, 1961, p. 391-406). Zbl0099.39202MR137124
- [45] S. Smale, Stable manifolds for differential equations and diffeomorphisms (Ann. Scola Normu. Sup. Pisa, vol. 17, 1963, p. 97-116). Zbl0113.29702MR165537
- [46] J.M. Souriau, Structure des systèmes dynamiques (Dunod, Paris, 1970). Zbl0186.58001MR260238
- [47] E. Spainier, Algebraic Topology (Mc Craw-Hill, New York, 1966). Zbl0145.43303
- [48] J. Stallings, The piecewise-linear structure of euclidean space (Proc. Cambridge Phil. Soc., vol. 58, 1962, p. 481-488). Zbl0107.40203MR149457
- [49] N. Steenrod, The Topology of Fiber Bundles (Princeton University Press, Princeton, 1951). Zbl0054.07103
- [50] S. Tanno, The topology of contact Riemannian manifolds (Ill. J. Math., vol. 12, 1968, p. 700-717). Zbl0165.24703MR234486
- [51] H.O. Singh Varma, Homogeneous manifolds all of whose geodesics are closed (Indag. Math., vol. 48, 1965, p. 813-819). Zbl0135.40501MR190949
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.