Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials

M. Combescure; J. Ginibre

Annales de l'I.H.P. Physique théorique (1976)

  • Volume: 24, Issue: 1, page 17-30
  • ISSN: 0246-0211

How to cite

top

Combescure, M., and Ginibre, J.. "Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials." Annales de l'I.H.P. Physique théorique 24.1 (1976): 17-30. <http://eudml.org/doc/75885>.

@article{Combescure1976,
author = {Combescure, M., Ginibre, J.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {17-30},
publisher = {Gauthier-Villars},
title = {Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials},
url = {http://eudml.org/doc/75885},
volume = {24},
year = {1976},
}

TY - JOUR
AU - Combescure, M.
AU - Ginibre, J.
TI - Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1976
PB - Gauthier-Villars
VL - 24
IS - 1
SP - 17
EP - 30
LA - eng
UR - http://eudml.org/doc/75885
ER -

References

top
  1. [1] S. Agmon, International Congress of Mathematicians, Nice, 1970. 
  2. [2] J. Aguilar et J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 269-282. Zbl0219.47011MR345551
  3. [3] W. Amrein et V. Georgescu, Helv. Phys. Acta, t. 47, 1974, p. 517-533. MR366278
  4. [4] W. Amrein, in: Scattering Theory in Mathematical Physics. J. A. Lavita, J. P. Marchand eds, D. Reidel, Dordrecht, 1974. 
  5. [5] M.L. Baeteman and K. Chadan, Preceding paper. 
  6. [6] M. Sh. Birman, Vestn. L. G. U., t. 13, 1961, p. 163-166. MR139370
  7. [7] T. Ikebe, Arch. Ratl. Mech. Anal., t. 5, 1960, p. 1-34. Zbl0145.36902MR128355
  8. [8] T. Ikebe, Brasilia preprint, 1974. MR634703
  9. [9] T. Kato, Perturbation theory for linear operators. Springer, Berlin, 1966. Zbl0148.12601
  10. [10] T. Kato, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  11. [11] T. Kato, Israel J. Math., t. 13, 1972, p. 135-148. Zbl0246.35025MR333833
  12. [12] S.T. Kuroda, Jour. Anal. Math., t. 20, 1967, p. 57-117. Zbl0153.16903
  13. [13] R. Lavine, Indiana Univ. Math. Jour., t. 21, 1972, p. 643-656. Zbl0216.38501MR300134
  14. [14] R. Lavine, J. Funct. Anal., t. 12, 1973, p. 30-54. Zbl0246.47017
  15. [15] V.B. Matveev and M.M. Skriganov, D. A. N. SSSR, t. 202, 1972, p. 755-758. Zbl0242.47005MR300135
  16. [16] D.B. Pearson, Helv. Phys. Acta, t. 47, 1974, p. 249-264. MR420033
  17. [17] D.B. Pearson, Commun. Math. Phys., t. 40, 1975, p. 125-146. MR363285
  18. [18] M. Reed and B. Simon, Methods of modern mathematical physics. Academic Press, New York, 1973, Vol. I. Zbl0242.46001
  19. [19] M. Reed and B. Simon, Id., Vol. III, in preparation. 
  20. [20] D.W. Robinson, Ann. I. H. P., t. 21, 1974, p. 185-215. MR377304
  21. [21] J. Schwinger, Proc. Nat. Acad. Sci. (U. S. A.), t. 47, 1961, p. 122-129. MR129798
  22. [22] B. Simon, Quantum Mechanics for Hamiltonians defined as quadratic forms. Princeton Univ. Press, Princeton, 1971. Zbl0232.47053MR455975
  23. [23] B. Simon, Arch. Rat. Mech. Anal., t. 52, 1973, p. 44-48. Zbl0277.47007MR338548
  24. [24] M.M. Skriganov, Tr. Steklov. Math. Inst., t. 125, 1973, p. 187-195. Zbl0289.35065
  25. [25] M. Schechter, Spectra of partial differential operators. North Holland, Amsterdam, 1971. Zbl0225.35001MR447834
  26. [26] M. Schechter, Comm. Math. Helv., t. 49, 1974, p. 84-113. Zbl0288.47012MR367484

NotesEmbed ?

top

You must be logged in to post comments.