Applications de la méthode de Lavine au problème à trois corps
Annales de l'I.H.P. Physique théorique (1977)
- Volume: 26, Issue: 3, page 219-262
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMourre, Eric. "Applications de la méthode de Lavine au problème à trois corps." Annales de l'I.H.P. Physique théorique 26.3 (1977): 219-262. <http://eudml.org/doc/75935>.
@article{Mourre1977,
author = {Mourre, Eric},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {3},
pages = {219-262},
publisher = {Gauthier-Villars},
title = {Applications de la méthode de Lavine au problème à trois corps},
url = {http://eudml.org/doc/75935},
volume = {26},
year = {1977},
}
TY - JOUR
AU - Mourre, Eric
TI - Applications de la méthode de Lavine au problème à trois corps
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 26
IS - 3
SP - 219
EP - 262
LA - fre
UR - http://eudml.org/doc/75935
ER -
References
top- [1] J. Ginibre et M. Moulin, Hilbert Space Approach to Quantum Mechanical Three Body Problem. Ann. Inst. Henri Poincaré, vol. XXI, n° 2, 1974. Zbl0311.47003
- [2] L. Thomas, Asymptotic Completeness in Two and Three Particle Quantum Mechanical Scattering. Ann. Phys., t. 90, 1975, p. 127-165. MR424082
- [3] L.D. Faddeev, Mathematical Aspects of the Three Body Problem in the Quantum Scattering Theory. Israel Program for Scientific Translation, Jerusalem, 1965. Zbl0131.43504MR221828
- [4] T. Kato, a) Wave Operators and Similarly for Some Non-Self-Adjoint Operators. Math. Ann., t. 162, 1966. b) Growth Properties of Solutions of the Reduced Wave Equation with Variable Coefficient. Comm. Pure Appl. Math., t. 12, 1959. Zbl0091.09502MR190801
- [5] S. Agmon, a) Jour. Anal. Math., t. 23, 1970. b) International Congress of Mathematicians, Nice, 1970.
- [6] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic FormsPrinceton Univ. Press, Princeton, 1971. Zbl0232.47053MR455975
- [7] R. Lavine, Absolute Continuity of Positive Spectrum for Schrödinger Operators with Long Range Potentials. J. Functional Analysis, t. 12, 1973. Zbl0246.47017MR342880
- [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Academic Press, New York, vol. III, in preparation. Zbl0405.47007
- [9] Dunford-Schwartz, Linear Operators, Part I.
- [10] T. Kato, Perturbation Theory for Linear Operators. Zbl0148.12601
- [11] R. Lavine, Commutators and Scattering Theory II. A Class of One-Body Problems. Indiana Univ. Math. J., t. 21, 1972, p. 643-655. Zbl0216.38501MR300134
- [12] B. Simon, On Positive Eigenvalues of One-Body Schrödinger Operators, Communications on Pure and Applied Mathematics, vol. XXII, 1967. Zbl0167.11003
- [13] On the algebraic theory of scattering. J. F. A., t. 15, 1974, p. 364-377. Zbl0283.47006
- [14] Scattering theory with singular potential. I the two body problem. Ann. Inst. Henri Poincaré, t. 21, 1974, p. 185-215. MR377304
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.