Applications de la méthode de Lavine au problème à trois corps

Eric Mourre

Annales de l'I.H.P. Physique théorique (1977)

  • Volume: 26, Issue: 3, page 219-262
  • ISSN: 0246-0211

How to cite

top

Mourre, Eric. "Applications de la méthode de Lavine au problème à trois corps." Annales de l'I.H.P. Physique théorique 26.3 (1977): 219-262. <http://eudml.org/doc/75935>.

@article{Mourre1977,
author = {Mourre, Eric},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {3},
pages = {219-262},
publisher = {Gauthier-Villars},
title = {Applications de la méthode de Lavine au problème à trois corps},
url = {http://eudml.org/doc/75935},
volume = {26},
year = {1977},
}

TY - JOUR
AU - Mourre, Eric
TI - Applications de la méthode de Lavine au problème à trois corps
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 26
IS - 3
SP - 219
EP - 262
LA - fre
UR - http://eudml.org/doc/75935
ER -

References

top
  1. [1] J. Ginibre et M. Moulin, Hilbert Space Approach to Quantum Mechanical Three Body Problem. Ann. Inst. Henri Poincaré, vol. XXI, n° 2, 1974. Zbl0311.47003
  2. [2] L. Thomas, Asymptotic Completeness in Two and Three Particle Quantum Mechanical Scattering. Ann. Phys., t. 90, 1975, p. 127-165. MR424082
  3. [3] L.D. Faddeev, Mathematical Aspects of the Three Body Problem in the Quantum Scattering Theory. Israel Program for Scientific Translation, Jerusalem, 1965. Zbl0131.43504MR221828
  4. [4] T. Kato, a) Wave Operators and Similarly for Some Non-Self-Adjoint Operators. Math. Ann., t. 162, 1966. b) Growth Properties of Solutions of the Reduced Wave Equation with Variable Coefficient. Comm. Pure Appl. Math., t. 12, 1959. Zbl0091.09502MR190801
  5. [5] S. Agmon, a) Jour. Anal. Math., t. 23, 1970. b) International Congress of Mathematicians, Nice, 1970. 
  6. [6] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic FormsPrinceton Univ. Press, Princeton, 1971. Zbl0232.47053MR455975
  7. [7] R. Lavine, Absolute Continuity of Positive Spectrum for Schrödinger Operators with Long Range Potentials. J. Functional Analysis, t. 12, 1973. Zbl0246.47017MR342880
  8. [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Academic Press, New York, vol. III, in preparation. Zbl0405.47007
  9. [9] Dunford-Schwartz, Linear Operators, Part I. 
  10. [10] T. Kato, Perturbation Theory for Linear Operators. Zbl0148.12601
  11. [11] R. Lavine, Commutators and Scattering Theory II. A Class of One-Body Problems. Indiana Univ. Math. J., t. 21, 1972, p. 643-655. Zbl0216.38501MR300134
  12. [12] B. Simon, On Positive Eigenvalues of One-Body Schrödinger Operators, Communications on Pure and Applied Mathematics, vol. XXII, 1967. Zbl0167.11003
  13. [13] On the algebraic theory of scattering. J. F. A., t. 15, 1974, p. 364-377. Zbl0283.47006
  14. [14] Scattering theory with singular potential. I the two body problem. Ann. Inst. Henri Poincaré, t. 21, 1974, p. 185-215. MR377304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.