Analytic scattering theory of quantum mechanical three-body systems
Annales de l'I.H.P. Physique théorique (1980)
- Volume: 32, Issue: 2, page 125-160
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBalslev, Erik. "Analytic scattering theory of quantum mechanical three-body systems." Annales de l'I.H.P. Physique théorique 32.2 (1980): 125-160. <http://eudml.org/doc/76065>.
@article{Balslev1980,
author = {Balslev, Erik},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {analytic scattering theory; quantum mechanical three-body systems; three- body Schrödinger operator; stationary scattering theory; local inverse wave operators; S-matrix; analytic continuation},
language = {eng},
number = {2},
pages = {125-160},
publisher = {Gauthier-Villars},
title = {Analytic scattering theory of quantum mechanical three-body systems},
url = {http://eudml.org/doc/76065},
volume = {32},
year = {1980},
}
TY - JOUR
AU - Balslev, Erik
TI - Analytic scattering theory of quantum mechanical three-body systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1980
PB - Gauthier-Villars
VL - 32
IS - 2
SP - 125
EP - 160
LA - eng
KW - analytic scattering theory; quantum mechanical three-body systems; three- body Schrödinger operator; stationary scattering theory; local inverse wave operators; S-matrix; analytic continuation
UR - http://eudml.org/doc/76065
ER -
References
top- [1] S. Agmon, Lower bounds for solutions of Schrödinger equations, J. d'Anal. Math., 23, 1, 1970, p. 1-25. Zbl0211.40703MR276624
- [2] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. d. Scuola Norm. sup. de Pisa, Cl. d. Scienze ser. IV, vol. II, 2, 1975, p. 151-218. Zbl0315.47007MR397194
- [3] F. Aguilar and J.M. Combes, On a class of analytic perturbations of one-body Schrödinger operators, Comm. Math. Phys., 22, 1971, p. 269-279. Zbl0219.47011MR345551
- [4] D. Babbitt and E. Balslev, A characterization of dilation-analytic potentials and vectors, J. Funct. Anal., vol. 18, no. 1, 1975, p. 1-14. Zbl0304.47009MR384008
- [5] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. Zbl0219.47005MR345552
- [6] E. Balslev, Spectral theory of Schrödinger operators of many-body systems with permutation and rotation symmetries, Ann. Phys., t. 73, 1972, p. 49-107 ; Schrödinger operators with symmetries I-II, Reports on Mathematical Physics, t. 5, 1974, p. 219-280 et p. 393-413. MR332037
- [7] E. Balslev, Decomposition of many-body Schrödinger operators, Comm. Math. Phys., t. 52, 1977, p. 127-146. Zbl0352.35038MR438950
- [8] E. Balslev, Analytic scattering theory of 2-body Schrödinger operators, J. Funct. Anal., t. 29, 3, 1978, p. 375-396. Zbl0392.47003MR512251
- [9] E. Balslev, Scattering theory of dilated 3-body Schrödinger operators, J. Quantum Chem., t. 14, 1978, p. 361-370.
- [10] E. Balslev, Analytic scattering theory of quantum mechanical three-body systems, Aarhus University Preprint, no. 26, 1979. Zbl0405.47008
- [11] E. Balslev, Analytic scattering theory for many-body systems below the smallest three-body threshold, Aarhus University Preprint, 1979. to appear, Comm. Math. Phys. Zbl0436.35068MR589431
- [12] J.M. Combes and L.E. Thomas, Asymptotic behaviour of eigenfunction for multiparticle Schrödinger operators, Comm. Math. Phys., t. 34, 1973, p. 251- 270. Zbl0271.35062MR391792
- [13] L.D. Faddeev, Mathematical aspects of the three-body problem in quantum scattering theory, Israel program for scientific translations, Jerusalem, 1975. MR221828
- [14] J. Ginibre and M. Moulin, Hilbert space approach to the quantum-mechanical three-body problem, Ann. Inst. Poincaré, vol. XXI, no. 2, 1974, p. 97-145. Zbl0311.47003MR368656
- [15] G.A. Hagedorn, Asymptotic completeness for a class of four particle Schrödinger operators, Bull. Ann Math. Soc., t. 84, 1, 1978, p. 155-156. Zbl0389.47006MR496030
- [16] G.A. Hagedorn, A link between scattering resonances and dilation analytic resonances in few body quantum mechanics, Comm. Math. Phys., t. 65, 2, 1979, p. 181-188. Zbl0404.47007MR528190
- [17] K. Hepp, On the quantum-mechanical N-body problem, Helv. Phys. Acta, t. 42, 1969, p. 425-458. MR247840
- [18] J.S. Howland, Abstract stationary theory of multichannel scattering, J. Funct. Anal., t. 22, 1976, p. 250-282. Zbl0327.47004MR461175
- [19] R.J. Iorio and M. O'Carroll, Asymptotic completeness for multiparticle Schrödinger operators with weak potentials, Comm. math. Phys., t. 27, 1972, p. 137- 145. MR314392
- [20] A. Jensen, Local decay in time of solutions to Schrödinger's equation with dilation-analytic interaction, Manuscripta Math., t. 25, 1978, p. 61-77. Zbl0397.35056MR492959
- [21] T. Kako and K. Yajima, Spectral and scattering theory for a class of nons-elfadjoint operators, Sci. papers College Gen. Ed. Univ. Tokyo, t. 26, 1976, p. 73-89. Zbl0349.47010MR500220
- [22] T. Kato, Wave operators and similarity for some none-selfadjoint operators, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
- [23] T. Kato, Perturbation Theory for Linear Operators, 2 nd. ed. Springer-Verlag, 1976. Zbl0342.47009MR407617
- [24] T. Kato, Two space scattering, with applications to many-body problems, J. Fac. Sci. Univ. Tokyo, Sect. IA, t. 24, 1977, p. 503-514. Zbl0395.47007MR512674
- [25] S.T. Kuroda, An abstract stationary approach to perturbation of continuous spectra and scattering theory, J. d'Analyse Math., t. 20, 1967, p. 57-117. Zbl0153.16903MR216331
- [26] S.T. Kuroda, An introduction to scattering theory, Aarhus University Lecture notes, Series 51, Feb. 1979. Zbl0407.47003MR528757
- [27] R. Lavine, Commutators and scattering theory II, A class of one body problems, Indiana Univ. Math. J., t. 21, 1972, p. 643-656. Zbl0216.38501MR300134
- [28] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. I, Springer-Verlag, 1972. Zbl0223.35039MR350177
- [29] E. Mourre, Applications de la méthode de Lavine au problème à trois corps, Ann. Inst. Poincaré, Sect. A, t. 26, 3, 1977, p. 219-262. Zbl0364.47005MR441155
- [30] M. Reed and B. Simon, Methods of modern mathematical physics, IV, Academic Press, 1978. Zbl0401.47001MR751959
- [31] I.M. Sigal, Mathematical Foundations of quantum scattering theory for multiparticle systems, Mem. A. M. S., vol. 16, no. 2, 1978, p. 209. Zbl0399.47008MR508478
- [32] I.M. Sigal, On quantum mechanics of many-body systems with dilation analytic potentials, Bull. A. M. S., t. 84, 1, 1978, p. 152-154. Zbl0399.47009MR459410
- [33] S. Steinberg, Meromorphic families of compact operators, Arch. Rat. Mech. Anal., t. 31, 1968, p. 372-379. Zbl0167.43002MR233240
- [34] L.E. Thomas, Asymptotic completeness in two-and three particle quantum mechanical scattering, Ann. Phys., t. 90, 1975, p. 127-165. MR424082
- [35] C. Van Winter, Complex dynamical variables for multiparticle systems with analytic interactions I-II, J. Math. Anal. Appl., t. 47, 1974, p. 633-670; t. 48, 1974, p. 368-399. Zbl0321.47004MR368663
- [36] C. Van Winter, Invariant subspaces of analytic multiparticle Hamiltonians, J. Math. Anal. Appl., t. 49, 1975, p. 88-123. Zbl0296.46026MR356783
- [37] C. Van Winter, Projection operators associated with analytic multiparticle Hamiltonians Notices, Am. Math. Soc., t. 25, 1978, A-320.
- [38] K. Yajima, An abstract stationary approach to three-body scattering, J. Fac. Sci. Univ. Tokyo, Sect. IA, t. 25, 1978, p. 109-132. Zbl0398.35072MR494598
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.