Boundedness of two- and three-body resonances

Erik Balslev; Erik Skibsted

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 43, Issue: 4, page 369-397
  • ISSN: 0246-0211

How to cite

top

Balslev, Erik, and Skibsted, Erik. "Boundedness of two- and three-body resonances." Annales de l'I.H.P. Physique théorique 43.4 (1985): 369-397. <http://eudml.org/doc/76306>.

@article{Balslev1985,
author = {Balslev, Erik, Skibsted, Erik},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {dilation-analytic resonances; two-body Schrödinger operators; real part of resonance energies},
language = {eng},
number = {4},
pages = {369-397},
publisher = {Gauthier-Villars},
title = {Boundedness of two- and three-body resonances},
url = {http://eudml.org/doc/76306},
volume = {43},
year = {1985},
}

TY - JOUR
AU - Balslev, Erik
AU - Skibsted, Erik
TI - Boundedness of two- and three-body resonances
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 4
SP - 369
EP - 397
LA - eng
KW - dilation-analytic resonances; two-body Schrödinger operators; real part of resonance energies
UR - http://eudml.org/doc/76306
ER -

References

top
  1. [1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Class. Sci., Ser. IV, II, 1975, p. 151-218. Zbl0315.47007MR393882
  2. [2] E. Balslev, Analytic scattering theory of two-body Schrödinger operators, J. Funct. Analysis, t. 29, n° 3, 1978, p. 375-396. Zbl0392.47003MR512251
  3. [3] E. Balslev, Decomposition of many-body Schrödinger operators, Comm. Math. Phys. t. 52, 1977, p. 127-146. Zbl0352.35038MR438950
  4. [4] E. Balslev, Analytic scattering theory of quantum-mechanical three-body systems, Ann. Inst. Henri Poincaré, Vol. XXXII, n° 2, 1980, p. 125-160. Zbl0428.47003MR580324
  5. [5] E. Balslev, Resonances in three-body scattering theory, Adv. Appl. Math., t. 5, 1984, p. 260-285. Zbl0617.47008MR755381
  6. [6] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. Zbl0219.47005MR345552
  7. [7] J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré, Vol. XXI, n° 2, 1974, p. 97-145. Zbl0311.47003MR368656
  8. [8] R.J. Iorio and M. O'Carroll, Asymptotic completeness for multiparticle Schrödinger Hamiltonians with weak potentials, Comm. Math. Phys., t. 27, 1972, p. 137-145. MR314392
  9. [9] A. Jensen, Local decay in time of solutions to Schrödinger's equation with dilation-analytic interaction, Manuscripta Math., 1978, t. 25, p. 61-77. Zbl0397.35056MR492959
  10. [10] R. Newton, Scattering theory of waves and particles, 2nd edition, Springer-Verlag, 1982. Zbl0496.47011MR666397
  11. [11] M. Reed and B. Simon, Methods of modern mathematical physics, III and IV. New York, Academic Press, 1979 and 1978. MR529429
  12. [12] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, 1971. Zbl0232.47053MR455975
  13. [13] B. Simon, Quadratic form techniques and the Balslev-Combes theorem, Comm. Math. Phys., t. 27, 1972, p. 1-12. Zbl0237.35025MR321456
  14. [14] E. Skibsted, Resonances of Schrödinger operators with potentials. V(r) = γrβe-ζrα, β &gt; - 2, ζ &gt; 0 and α &gt; 1, to appear in J. Math. Anal. Appl. Zbl0611.35014MR843011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.