A stochastic scheme for constructing solutions of the Schrödinger equations

C. Dewitt-Morette; K. D. Elworthy; B. L. Nelson; G. S. Sammelman

Annales de l'I.H.P. Physique théorique (1980)

  • Volume: 32, Issue: 4, page 327-341
  • ISSN: 0246-0211

How to cite

top

Dewitt-Morette, C., et al. "A stochastic scheme for constructing solutions of the Schrödinger equations." Annales de l'I.H.P. Physique théorique 32.4 (1980): 327-341. <http://eudml.org/doc/76080>.

@article{Dewitt1980,
author = {Dewitt-Morette, C., Elworthy, K. D., Nelson, B. L., Sammelman, G. S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {curved space; external gauge field; multiply connected configuration space; Feynman path integration; historical discussion},
language = {eng},
number = {4},
pages = {327-341},
publisher = {Gauthier-Villars},
title = {A stochastic scheme for constructing solutions of the Schrödinger equations},
url = {http://eudml.org/doc/76080},
volume = {32},
year = {1980},
}

TY - JOUR
AU - Dewitt-Morette, C.
AU - Elworthy, K. D.
AU - Nelson, B. L.
AU - Sammelman, G. S.
TI - A stochastic scheme for constructing solutions of the Schrödinger equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1980
PB - Gauthier-Villars
VL - 32
IS - 4
SP - 327
EP - 341
LA - eng
KW - curved space; external gauge field; multiply connected configuration space; Feynman path integration; historical discussion
UR - http://eudml.org/doc/76080
ER -

References

top
  1. H. Airault, Subordination de processus dans Ie fibré tangent et formes harmoniques, C. R. Acad. Sc. Paris, t. 282, Sér. A, 1976, p. 1311-1314. Zbl0336.53029MR420740
  2. S.J. Avis and C.J. Isham, Lorentz gauge invariant vacuum functionals for quantized spinor fields in non-simply connected space-times. Preprint Imperial College, London SW7 2BZ, 1979. MR542970
  3. J.M.C. Clark, An introduction to stochastic differential equations on manifolds, Geometric Methods in Systems Theory (D. Q. Mayne, R. W. Brockett, eds.), Reidel, Holland, 1973. Zbl0296.60035
  4. B.S. De Witt, Dynamical theory in curved spaces. I. A review of the classical and quantum action principles, Rev. Mod. Phys., t. 29, 1957, p. 337-397. Zbl0118.23301MR95691
  5. B.S. De Witt, C.F. Hart and C.J. Isham, Topology and quantum field theory. To appear in the Schwinger Festschrift. 
  6. C. De Witt-Morette, A. Maheshwari and B. Nelson, Path integration in non-relativistic mechanics, Physics Reports, t. 50, 1979, p. 257-372. 
  7. C. De Witt-Morette and K.D. Elworthy, Stochastic differential equations. Lecture notes and problems, Preprint of the Center for Relativity, University of Texas, Austin, TX 78712, 1979. 
  8. J. Dollard and C. Friedman, Product integration, Addison-Wesley, 1979. MR552941
  9. J.S. Dowker, Quantum mechanics and field theory on multiply connected and on homogeneous spaces, J. Phys. A. Gen. Phys., t. 5, 1972, p. 936-943. MR418715
  10. J. Eells and K.D. Elworthy, Stochastic Dynamical Systems, in Control theory and topics in functional analysis, vol. III, International Atomic Energy Agency, Vienna, 1976, p. 179-185. Zbl0355.60053MR516923
  11. K.D. Elworthy, Stochastic differential equations on manifolds. Notes based on seminars given by J. Eells and K. D. Elworthy, available from the Department of Mathematics, University of Warwick, Coventry CV4 7AL, and references therein, 1978. 
  12. K.D. Elworthy and A. Truman, Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation on riemannian manifolds. In preparation, 1979. Zbl0485.70024
  13. W. Garczynski, On alternative ways of including an external electromagnetic field, Bull. Acad. Polonaise Sciences, t. XXI, 1973, p. 355-358. 
  14. M.G.G. Laidlaw, Ph. D. Thesis, University of North Carolina, 1971. 
  15. M.G.G. Laidlaw and C.M. Dewitt, Feynman functional integrals for systems of indistinguishable particles, Phys. Rev., t. D 3, 1971, p. 1375-1377. 
  16. D.W. Mclaughlin and L.S. Schulman, Path integrals in curved spaces, J. Math. Phys., t. 12, 1971, p. 2520-2524. MR289052
  17. C. Morette, On the definition and approximation of Feynnman's path integrals, Phys. Rev., t. 81, 1951, p. 848-852. Zbl0042.45506MR41009
  18. B.L. Nelson and B. Sheeks, Path integration for velocity dependent potentials, Preprint of the Center for Relativity, University of Texas, Austin, TX 78712, 1979. Zbl0509.70012
  19. W. Pauli, Asugewahlte Kapitel aus Der Feldquantisierung, Gehalten an Der E. T. H. in Zürich, 1950-1951. Reprinted in Pauli Lectures in Physics, Ed. C. P. Enz, MIT Press, 1952. 
  20. H.R. Petry, Exotic spinors in superconductivity, J. Math. Phys., t. 20, 1979, p. 231-240. MR519205
  21. M.A. Pinsky, Stochastic riemannian geometry, Probabilistic analysis and related topics, t. 1, 1978, p. 199-236. Zbl0452.60083MR501385
  22. L.S. Schulman, A path integral for spin, Phys. Rev., t. 176, 1968, p. 1558-1567. MR237149
  23. L.S. Schulman, Green's function for an electron in a lattice, Phys. Rev., t. 188, 1969, p. 1139-1142. 
  24. B. Simon, Functional integration and quantum physics, Academic Press, 1979. Zbl0434.28013MR544188
  25. N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951. Zbl0054.07103MR39258
  26. A. Truman, Classical mechanics, the diffusion (heat) equation and the Schrödinger equation, J. Math. Phys., t. 18, 1977, p. 2308-2315. Zbl0366.35042MR468817
  27. S.K. Wong, Field and particle equations for the classical Yang-Mills field and particles with isotropic spin, Nuovo Cimento, t. 65, 1970, p. 689-694. 
  28. C.N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev., t. 96, 1954, p. 191-195. Zbl06538052MR65437
  29. S.T. Yau, On the heat kernel of a complete riemannian manifold, J. Math. pures et appl., t. 57, 1978, p. 191-207. Zbl0405.35025MR505904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.