A partial solution for Feynman's problem – a new derivation of the Weyl equation.
The recent development of mathematical methods of investigation of problems with hysteresis has shown that the structure of the hysteresis memory plays a substantial role. In this paper we characterize the hysteresis operators which exhibit a memory effect of the Preisach type (memory preserving operators). We investigate their properties (continuity, invertibility) and we establish some relations between special classes of such operators (Preisach, Ishlinskii and Nemytskii operators). For a general...
A new approach is proposed for the quantum mechanics of guiding center motion in strong magnetic field. This is achieved by use of the coherent state path integral for the coupled systems of the cyclotron and the guiding center motion. We are specifically concerned with the effective action for the guiding center degree, which can be used to get the Bohr- Sommerfeld quantization scheme. The quantization rule is similar to the one for the vortex motion as a dynamics of point particles.
The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects...
In this paper we show that the Euler equation for incompressible fluids in R2 is well posed in the (vector-valued) Lebesgue spacesLsp = (1 - ∆)-s/2 Lp(R2) with s > 1 + 2/p, 1 < p < ∞and that the same is true of the Navier-Stokes equation uniformly in the viscosity ν.