Classical wave operators and asymptotic quantum field operators on curved space-times

J. Dimock; Bernard S. Kay

Annales de l'I.H.P. Physique théorique (1982)

  • Volume: 37, Issue: 2, page 93-114
  • ISSN: 0246-0211

How to cite

top

Dimock, J., and Kay, Bernard S.. "Classical wave operators and asymptotic quantum field operators on curved space-times." Annales de l'I.H.P. Physique théorique 37.2 (1982): 93-114. <http://eudml.org/doc/76171>.

@article{Dimock1982,
author = {Dimock, J., Kay, Bernard S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lorentzian metrics; wave operators; Klein-Gordon equation; inverse wave operators; scattering operators},
language = {eng},
number = {2},
pages = {93-114},
publisher = {Gauthier-Villars},
title = {Classical wave operators and asymptotic quantum field operators on curved space-times},
url = {http://eudml.org/doc/76171},
volume = {37},
year = {1982},
}

TY - JOUR
AU - Dimock, J.
AU - Kay, Bernard S.
TI - Classical wave operators and asymptotic quantum field operators on curved space-times
JO - Annales de l'I.H.P. Physique théorique
PY - 1982
PB - Gauthier-Villars
VL - 37
IS - 2
SP - 93
EP - 114
LA - eng
KW - Lorentzian metrics; wave operators; Klein-Gordon equation; inverse wave operators; scattering operators
UR - http://eudml.org/doc/76171
ER -

References

top
  1. [1] N. Bogolubov, A. Logunov, and I. Todorov, Introduction to Axiomatic Quantum Field Theory, Benjamin, Reading, Mass., 1975. 
  2. [2] P. Bongaarts, The electron-positron field coupled to external electromagnetic potentials as an elementary C*-algebra theory, Ann. Phys. (N. Y.), t. 56, 1970, p. 108. MR260291
  3. [3] P. Bongaarts, S. Ruijsenaars, The Klein paradox as a many particle problem, Annals of Physics, t. 101, 1976, p. 289. MR443657
  4. [4] O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics II, Berlin-Heidelberg-New York, Springer, 1981. Zbl0463.46052MR611508
  5. [5] Y. Choquet-Bruhat, Hyperbolic differential equations on a manifold, in Battelle Rencontres, DeWitt and Wheeler, eds. Benjamin, N. Y., 1968. Zbl0169.43202MR239299
  6. [6] Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia, On the wave equation in curved space-time, Ann. Inst. Henri Poincaré, t. A 21, 1979, p. 339. Zbl0454.58016MR574143
  7. [7] P. Cotta-Ramusino, W. Krüger, R. Schrader, Quantum scattering by external metrics and Yang-Mills potentials, Ann. Inst. Henri Poincaré, t. A 21, 1979, p. 43. Zbl0441.35055MR557051
  8. [8] J. Dimock, Scalar quantum field in an external gauge field, J. Math. Phys., t. 20, 1979, p. 1791. Zbl0425.35075MR543917
  9. [9] J. Dimock, Scalar quantum field in an external gravitational field, J. Math. Phys., t. 20, 1979, p. 2549. Zbl0455.35105MR553516
  10. [10] J. Dimock, Algebras of local observables on a manifold, Commun. Math. Phys., t. 77, 1980, p. 219. Zbl0455.58030MR594301
  11. [11] E. Furlani, Suny at Buffalo thesis (1982). 
  12. [12] S. Hawking and G. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973. Zbl0265.53054MR424186
  13. [13] Articles by C. Isham and P. Hajicek in: Differential Geometric Methods in Mathematical Physics II, Bleuler, Petry, Reetz (eds). Springer Lecture Notes in Mathematics, t. 676, Springer-Verlag, Berlin-Heidelberg-N. Y., 1978. MR519605
  14. [14] B. Kay, Linear spin zero quantum fields in external gravitational and scalar . fields I, Commun. Math. Phys., t. 62, 1978, p. 55. MR506366
  15. [15] B. Kay, Linear spin zero quantum fields in external gravitational and scalar fields II, Commun. Math., Phys., t. 71, 1980, p. 29. MR556899
  16. [16] B. Kay, A Uniqueness result in the Segal-Weinless approach to linear Bose fields, J. Math. Phys., t. 20, 1979, p. 1712. MR543906
  17. [17] B. Kay, Quantum fields in curved space-times and scattering theory, in: Differential Geometric Methods in Mathematical Physics. Proceedings, 1980. Andersson, Doebner, Petry (eds). Springer Lecture Notes in Mathematics, t. 905, Springer–Verlag. Berlin-Heidelberg-N. Y., 1982. Zbl0544.35078
  18. [18] J. Leray, Hyperbolic Differential Equations, Princeton Lectures Notes, 1953 (unpublished). Zbl0588.35002MR80849
  19. [19] L. Lundberg, Relativistic quantum theory for charged spinless particles in external vector fields, Commun. Math. Phys., t. 31, 1973, p. 295. Zbl1125.81311MR378634
  20. [20] S. Nelson, L2 asymptotes for the Klein-Gordon equation, Proc. Am. Math. Soc., t. 27, 1971, p. 110. Zbl0214.10201MR271561
  21. [21] G. Nenciu, Strong external fields in Q. E. D. rigorous results. Proceedings of the International Summer School in Heavy Ion Physics, Predeal, Roumania, 1978. 
  22. [22] S. Paneitz and I. Segal, Quantization of wave equations and hermitian structures in partial differential varieties, Proc. Nat. Acad. Sci. U. S. A., t. 12, 1980, p. 6943. Zbl0469.35065MR603063
  23. [23] M. Reed, B. Simon, Methods of Modern Mathematical Physics III, Academic Press, N. Y., 1979. Zbl0405.47007MR529429
  24. [24] S. Ruijsenaars, Gauge invariance and implementability of the S operator for spin 0 and spin 1/2 in time dependent external fields. Journal of Functional Analysis, t. 33, 1979, p. 47. MR545384
  25. [25] I. Segal, in Applications of Mathematics to Problems in Theoretical Physics, F. Lurçat (ed.), Gordon and Breach, N. Y., 1967. 
  26. [26] R. Seiler, Particles with spin S ≥ 1 in an external field, in Invariant Wave Equations, Lecture Notes in Physics, t. 73, Springer-Verlag, Berlin-Heidelberg- New York, 1978. MR495993
  27. [27] D. Shale, Linear symmetries of free Bose fields. Trans. Am. Math. Soc., t. 103, 1962, p. 149. Zbl0171.46901MR137504
  28. [28] J. Slawny, On factor representations and the C*-algebra of the canonical commutation relations, Commun. Math. Phys., t. 24, 1972, p. 151. Zbl0225.46068MR293942
  29. [29] R. Wald, Existence of the S-matrix in quantum field theory in curved space–time, Ann. Phys. (N. Y.), t. 118, 1979, p. 490. MR533774
  30. [30] M. Weinless, Existence and uniqueness of the vacuum for linear quantized fields, J. Funct. Anal., t. 4, 1969, p. 350. Zbl0205.57504MR253687

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.