Quantum vacuum polarization at the Black-Hole horizon

Alain Bachelot

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 2, page 181-222
  • ISSN: 0246-0211

How to cite

top

Bachelot, Alain. "Quantum vacuum polarization at the Black-Hole horizon." Annales de l'I.H.P. Physique théorique 67.2 (1997): 181-222. <http://eudml.org/doc/76768>.

@article{Bachelot1997,
author = {Bachelot, Alain},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hawking effect; collapsing star; classical field equations; Cauchy problem},
language = {eng},
number = {2},
pages = {181-222},
publisher = {Gauthier-Villars},
title = {Quantum vacuum polarization at the Black-Hole horizon},
url = {http://eudml.org/doc/76768},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Bachelot, Alain
TI - Quantum vacuum polarization at the Black-Hole horizon
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 2
SP - 181
EP - 222
LA - eng
KW - Hawking effect; collapsing star; classical field equations; Cauchy problem
UR - http://eudml.org/doc/76768
ER -

References

top
  1. [1] J. Audretsch, V. De Sabbata, editor. Quantum Mechanics in Curved Space-Time, Vol. 230 of NATO ASI Series B. Plenum Press, 1989. Zbl0729.53069MR1145039
  2. [2] A. Bachelot. Asymptotic Completeness for the Klein-Gordon Equation on the Schwarzschild Metric. Ann. Inst. Henri Poincaré - Physique théorique, 1994, Vol. 61 (4), pp. 411-441. Zbl0809.35141MR1311537
  3. [3] A. Bachelot. Scattering of Scalar Fields by Spherical Gravitational Collapse. J. Math. Pures Appl., 1997, Vol. 76, pp. 155-210. Zbl0872.53066MR1432372
  4. [4] N.D. Birrel, P.C.W. Davies. Quantum fields in curved space. Cambridge University Press, 1982. Zbl0476.53017MR652252
  5. [5] O. Bratteli, D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics II. Springer Verlag, 1981. Zbl0463.46052MR611508
  6. [6] P. Candelas. Vacuum polarization in Schwarzschild spacetime. Phys. Rev. D, Vol. 21 (8), 1980, pp. 2185-2202. MR570920
  7. [7] B.S. De Witt. Quantum Field Theory in Curved Space-Time. Phys. Rep., Vol. 19(6), 1975, pp. 295-357. 
  8. [8] J. Dimock. Algebras of Local Observables on a Manifold. Commun. Math. Phys., Vol. 77, 1980, pp. 219-228. Zbl0455.58030MR594301
  9. [9] J. Dimock, B.S. Kay. Classical wave operators and asymptotic quantum field operators on curved space-times. Ann. Inst. Henri Poincaré, Vol. 37(2), 1982, pp. 93-114. Zbl0539.35063MR682092
  10. [10] J. Dimock, B.S. Kay. Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric II. J. Math. Phys., Vol. 27, 1986, pp. 2520-2525. Zbl0608.53065MR857397
  11. [11] J. Dimock, B.S. Kay. Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric I. Ann. Phys., Vol. 175, 1987, pp. 366-426. Zbl0628.53080MR887979
  12. [12] K. Fredenhagen, R. Haag. On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole. Comm. Math. Phys., Vol. 127, 1990, pp. 273-284. Zbl0692.53040MR1037104
  13. [13] S.A. Fulling. Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press. 1989. Zbl0677.53081MR1071177
  14. [14] G.W. Gibbons. S.W. Hawking. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, Vol. 15, 1977, pp. 2738-2751. MR459479
  15. [15] R. Haag. Local Quantum Physics. Springer-Verlag, 1992. Zbl0777.46037MR1182152
  16. [16] S. Hawking. Particle Creation by Black Holes. Comm. Math. Phys., Vol. 43. 1975. pp. 199-220. MR381625
  17. [17] C.J. Isham. Quantum field theory in Curved Space-Times, a general mathematical framework. In Differential Geometric Methods in Mathematical Physics II, volume 676, 1977 of Lecture Notes in Math., pp. 459-512. Springer Verlag. Zbl0403.58007MR519626
  18. [18] T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, second edition, 1980. Zbl0435.47001MR407617
  19. [19] B.S. Kay. Quantum Mechanics in Curved Space-Times and Scattering Theory. In Differential Geometric Methods in Mathematical Physics, Vol. 905, 1980 of Lecture Notes in Math., pp. 272-295. Springer Verlag. Zbl0544.35078MR582628
  20. [20] J-P. Nicolas. Scattering of linear Dirac fields by a spherically symetric Black-Hole. Ann. Inst. Henri Poincaré - Physique théorique, Vol. 62(2), 1995, pp. 145-179. Zbl0826.53072MR1317184
  21. [21] I.E. Segal. Foundations of the theory of dynamical systems of infinitely many degrees of freedom, II. Canadian J. Math, Vol. 13, 1961, pp. 1-18. Zbl0098.22104MR128839
  22. [22] G.L. Sewell. Relativity of temperature and the Hawking effect. Phys. Lett. A, Vol. 79A(1), 1980, pp. 23-24. MR597629
  23. [23] G.L. Sewell. Quantum Fields on Manifolds: PCT and Gravitationally Induced Thermal States. Ann. Phys., Vol. 141, 1982, pp. 201-224. MR673980
  24. [24] W.G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, Vol. 14(4), 1976, pp. 870-892. 
  25. [25] R. Wald. On Particle Creation by Black Holes. Comm. Math. Phys., Vol. 45, 1975, pp. 9-34. MR391814
  26. [26] R. Wald. Quantum field theory in curved space-time and black-hole thermodynamics. University of Chicago Press, 1994. Zbl0842.53052MR1302174
  27. [27] M. Weinless. Existence and Uniqueness of the Vacuum for Linear Quantized Fields. J. Funct. Anal., Vol. 4, 1969, pp. 350-379. Zbl0205.57504MR253687
  28. [28] J.W. YorkJr., Dynamical origin of Black-Hole radiance. Phys. Rev. D, Vol. 28(12). 1983, pp. 2929-2945. MR726730

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.