Quantum vacuum polarization at the Black-Hole horizon
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 67, Issue: 2, page 181-222
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBachelot, Alain. "Quantum vacuum polarization at the Black-Hole horizon." Annales de l'I.H.P. Physique théorique 67.2 (1997): 181-222. <http://eudml.org/doc/76768>.
@article{Bachelot1997,
author = {Bachelot, Alain},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hawking effect; collapsing star; classical field equations; Cauchy problem},
language = {eng},
number = {2},
pages = {181-222},
publisher = {Gauthier-Villars},
title = {Quantum vacuum polarization at the Black-Hole horizon},
url = {http://eudml.org/doc/76768},
volume = {67},
year = {1997},
}
TY - JOUR
AU - Bachelot, Alain
TI - Quantum vacuum polarization at the Black-Hole horizon
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 2
SP - 181
EP - 222
LA - eng
KW - Hawking effect; collapsing star; classical field equations; Cauchy problem
UR - http://eudml.org/doc/76768
ER -
References
top- [1] J. Audretsch, V. De Sabbata, editor. Quantum Mechanics in Curved Space-Time, Vol. 230 of NATO ASI Series B. Plenum Press, 1989. Zbl0729.53069MR1145039
- [2] A. Bachelot. Asymptotic Completeness for the Klein-Gordon Equation on the Schwarzschild Metric. Ann. Inst. Henri Poincaré - Physique théorique, 1994, Vol. 61 (4), pp. 411-441. Zbl0809.35141MR1311537
- [3] A. Bachelot. Scattering of Scalar Fields by Spherical Gravitational Collapse. J. Math. Pures Appl., 1997, Vol. 76, pp. 155-210. Zbl0872.53066MR1432372
- [4] N.D. Birrel, P.C.W. Davies. Quantum fields in curved space. Cambridge University Press, 1982. Zbl0476.53017MR652252
- [5] O. Bratteli, D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics II. Springer Verlag, 1981. Zbl0463.46052MR611508
- [6] P. Candelas. Vacuum polarization in Schwarzschild spacetime. Phys. Rev. D, Vol. 21 (8), 1980, pp. 2185-2202. MR570920
- [7] B.S. De Witt. Quantum Field Theory in Curved Space-Time. Phys. Rep., Vol. 19(6), 1975, pp. 295-357.
- [8] J. Dimock. Algebras of Local Observables on a Manifold. Commun. Math. Phys., Vol. 77, 1980, pp. 219-228. Zbl0455.58030MR594301
- [9] J. Dimock, B.S. Kay. Classical wave operators and asymptotic quantum field operators on curved space-times. Ann. Inst. Henri Poincaré, Vol. 37(2), 1982, pp. 93-114. Zbl0539.35063MR682092
- [10] J. Dimock, B.S. Kay. Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric II. J. Math. Phys., Vol. 27, 1986, pp. 2520-2525. Zbl0608.53065MR857397
- [11] J. Dimock, B.S. Kay. Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric I. Ann. Phys., Vol. 175, 1987, pp. 366-426. Zbl0628.53080MR887979
- [12] K. Fredenhagen, R. Haag. On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole. Comm. Math. Phys., Vol. 127, 1990, pp. 273-284. Zbl0692.53040MR1037104
- [13] S.A. Fulling. Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press. 1989. Zbl0677.53081MR1071177
- [14] G.W. Gibbons. S.W. Hawking. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, Vol. 15, 1977, pp. 2738-2751. MR459479
- [15] R. Haag. Local Quantum Physics. Springer-Verlag, 1992. Zbl0777.46037MR1182152
- [16] S. Hawking. Particle Creation by Black Holes. Comm. Math. Phys., Vol. 43. 1975. pp. 199-220. MR381625
- [17] C.J. Isham. Quantum field theory in Curved Space-Times, a general mathematical framework. In Differential Geometric Methods in Mathematical Physics II, volume 676, 1977 of Lecture Notes in Math., pp. 459-512. Springer Verlag. Zbl0403.58007MR519626
- [18] T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, second edition, 1980. Zbl0435.47001MR407617
- [19] B.S. Kay. Quantum Mechanics in Curved Space-Times and Scattering Theory. In Differential Geometric Methods in Mathematical Physics, Vol. 905, 1980 of Lecture Notes in Math., pp. 272-295. Springer Verlag. Zbl0544.35078MR582628
- [20] J-P. Nicolas. Scattering of linear Dirac fields by a spherically symetric Black-Hole. Ann. Inst. Henri Poincaré - Physique théorique, Vol. 62(2), 1995, pp. 145-179. Zbl0826.53072MR1317184
- [21] I.E. Segal. Foundations of the theory of dynamical systems of infinitely many degrees of freedom, II. Canadian J. Math, Vol. 13, 1961, pp. 1-18. Zbl0098.22104MR128839
- [22] G.L. Sewell. Relativity of temperature and the Hawking effect. Phys. Lett. A, Vol. 79A(1), 1980, pp. 23-24. MR597629
- [23] G.L. Sewell. Quantum Fields on Manifolds: PCT and Gravitationally Induced Thermal States. Ann. Phys., Vol. 141, 1982, pp. 201-224. MR673980
- [24] W.G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, Vol. 14(4), 1976, pp. 870-892.
- [25] R. Wald. On Particle Creation by Black Holes. Comm. Math. Phys., Vol. 45, 1975, pp. 9-34. MR391814
- [26] R. Wald. Quantum field theory in curved space-time and black-hole thermodynamics. University of Chicago Press, 1994. Zbl0842.53052MR1302174
- [27] M. Weinless. Existence and Uniqueness of the Vacuum for Linear Quantized Fields. J. Funct. Anal., Vol. 4, 1969, pp. 350-379. Zbl0205.57504MR253687
- [28] J.W. YorkJr., Dynamical origin of Black-Hole radiance. Phys. Rev. D, Vol. 28(12). 1983, pp. 2929-2945. MR726730
Citations in EuDML Documents
top- Bernard Kay, Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes : especially black holes, time machines and a new semi-local vacuum concept
- Alain Bachelot, L’effet Hawking
- Alain Bachelot, The Hawking effect
- Dietrich Häfner, Jean-Philippe Nicolas, Théorie de la diffusion pour l’équation de Dirac sans masse dans la métrique de Kerr
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.