An analog of the RAGE theorem for the impact parameter approximation to three particle scattering

George A. Hagedorn

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 1, page 59-68
  • ISSN: 0246-0211

How to cite

top

Hagedorn, George A.. "An analog of the RAGE theorem for the impact parameter approximation to three particle scattering." Annales de l'I.H.P. Physique théorique 38.1 (1983): 59-68. <http://eudml.org/doc/76182>.

@article{Hagedorn1983,
author = {Hagedorn, George A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {three body quantum system},
language = {eng},
number = {1},
pages = {59-68},
publisher = {Gauthier-Villars},
title = {An analog of the RAGE theorem for the impact parameter approximation to three particle scattering},
url = {http://eudml.org/doc/76182},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Hagedorn, George A.
TI - An analog of the RAGE theorem for the impact parameter approximation to three particle scattering
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 1
SP - 59
EP - 68
LA - eng
KW - three body quantum system
UR - http://eudml.org/doc/76182
ER -

References

top
  1. [1] W. Amrein, V. Georgescu, Bound states and scattering states in quantum mechanics. Helv. Phys. Acta, t. 46, 1973, p. 633-658. MR363267
  2. [2] E.B. Davies, On Enss' approach to scattering theory. Duke Math. J., t. 47, 1980, p. 171-185. Zbl0434.47014MR563374
  3. [3] V. Enss, Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys., t. 61, 1978, p. 285-291. Zbl0389.47005MR523013
  4. [4] V. Enss, Geometric Methods in Spectral and Scattering Theory of Schrödinger operators, in Rigourous atomic and Molecular physics, ed. by G. Velo and A. Wightman, Plenum, New York (to appear). 
  5. [5] J. Ginibre, La méthode « dépendant du temps » dans le problème de la complétude asymptotique. Preprint, Université de Paris-Sud, 1980. 
  6. [6] G.A. Hagedorn, Asymptotic completeness for the impact parameter approximation to three particle scattering. Ann. Inst. H. Poincaré, Sect. A, t. 36, 1982, p. 19-40. Zbl0482.47003MR653016
  7. [7] M. Reed, B. Simon, Methods of modern mathematical physics, vol. 1, Functional analysis, New York, London, Academic Press, 1972. Zbl0242.46001
  8. [8] M. Reed, B. Simon, Methods of modern mathematical physics, vol. II, Fourier analysis, self-adjointness, New York, London, Academic Press, 1975. Zbl0308.47002
  9. [9] M. Reed, B. Simon, Methods of modern mathematical physics, vol. III, Scattering theory, New York, London, Academic Press, 1979. Zbl0405.47007MR529429
  10. [10] M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Analysis of operators, New York, London, Academic Press, 1978. Zbl0401.47001
  11. [11] D. Ruelle, A remark on bound states in potential scattering theory. Nuovo Cimento, t. A61, 1969, p. 655-662. MR246603
  12. [12] B. Simon, Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, 1971. Zbl0232.47053MR455975
  13. [13] B. Simon, Phase space analysis of simple scattering systems, Extensions of some work of Enss. Duke Math. J., t. 46, 1979, p. 119-168. Zbl0402.35076MR523604
  14. [14] D. Yafaev, On the proof of Enss of asymptotic completeness in potential scattering. Preprint, Steklov Institute, Leningrad, 1979. Zbl0438.47012
  15. [15] K. Yajima, A multi-channel scattering theory for some time dependent hamiltonians, Charge transfer problem. Commun. Math. Phys., t. 75, 1980, p. 153-178. Zbl0437.47008MR582506
  16. [16] K. Yosida, Functional analysis, Berlin, Heidelberg, New York, Springer-Verlag, 1968. Zbl0152.32102MR617913
  17. [17] P. Perry, Mellin transforms and scattering theory I. Short range potentials. Duke Math. Journal, t. 47, 1980, p. 187-193. Zbl0445.47009MR563375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.