An analog of the RAGE theorem for the impact parameter approximation to three particle scattering

George A. Hagedorn

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 1, page 59-68
  • ISSN: 0246-0211

How to cite

top

Hagedorn, George A.. "An analog of the RAGE theorem for the impact parameter approximation to three particle scattering." Annales de l'I.H.P. Physique théorique 38.1 (1983): 59-68. <http://eudml.org/doc/76182>.

@article{Hagedorn1983,
author = {Hagedorn, George A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {three body quantum system},
language = {eng},
number = {1},
pages = {59-68},
publisher = {Gauthier-Villars},
title = {An analog of the RAGE theorem for the impact parameter approximation to three particle scattering},
url = {http://eudml.org/doc/76182},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Hagedorn, George A.
TI - An analog of the RAGE theorem for the impact parameter approximation to three particle scattering
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 1
SP - 59
EP - 68
LA - eng
KW - three body quantum system
UR - http://eudml.org/doc/76182
ER -

References

top
  1. [1] W. Amrein, V. Georgescu, Bound states and scattering states in quantum mechanics. Helv. Phys. Acta, t. 46, 1973, p. 633-658. MR363267
  2. [2] E.B. Davies, On Enss' approach to scattering theory. Duke Math. J., t. 47, 1980, p. 171-185. Zbl0434.47014MR563374
  3. [3] V. Enss, Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys., t. 61, 1978, p. 285-291. Zbl0389.47005MR523013
  4. [4] V. Enss, Geometric Methods in Spectral and Scattering Theory of Schrödinger operators, in Rigourous atomic and Molecular physics, ed. by G. Velo and A. Wightman, Plenum, New York (to appear). 
  5. [5] J. Ginibre, La méthode « dépendant du temps » dans le problème de la complétude asymptotique. Preprint, Université de Paris-Sud, 1980. 
  6. [6] G.A. Hagedorn, Asymptotic completeness for the impact parameter approximation to three particle scattering. Ann. Inst. H. Poincaré, Sect. A, t. 36, 1982, p. 19-40. Zbl0482.47003MR653016
  7. [7] M. Reed, B. Simon, Methods of modern mathematical physics, vol. 1, Functional analysis, New York, London, Academic Press, 1972. Zbl0242.46001
  8. [8] M. Reed, B. Simon, Methods of modern mathematical physics, vol. II, Fourier analysis, self-adjointness, New York, London, Academic Press, 1975. Zbl0308.47002
  9. [9] M. Reed, B. Simon, Methods of modern mathematical physics, vol. III, Scattering theory, New York, London, Academic Press, 1979. Zbl0405.47007MR529429
  10. [10] M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Analysis of operators, New York, London, Academic Press, 1978. Zbl0401.47001
  11. [11] D. Ruelle, A remark on bound states in potential scattering theory. Nuovo Cimento, t. A61, 1969, p. 655-662. MR246603
  12. [12] B. Simon, Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, 1971. Zbl0232.47053MR455975
  13. [13] B. Simon, Phase space analysis of simple scattering systems, Extensions of some work of Enss. Duke Math. J., t. 46, 1979, p. 119-168. Zbl0402.35076MR523604
  14. [14] D. Yafaev, On the proof of Enss of asymptotic completeness in potential scattering. Preprint, Steklov Institute, Leningrad, 1979. Zbl0438.47012
  15. [15] K. Yajima, A multi-channel scattering theory for some time dependent hamiltonians, Charge transfer problem. Commun. Math. Phys., t. 75, 1980, p. 153-178. Zbl0437.47008MR582506
  16. [16] K. Yosida, Functional analysis, Berlin, Heidelberg, New York, Springer-Verlag, 1968. Zbl0152.32102MR617913
  17. [17] P. Perry, Mellin transforms and scattering theory I. Short range potentials. Duke Math. Journal, t. 47, 1980, p. 187-193. Zbl0445.47009MR563375

NotesEmbed ?

top

You must be logged in to post comments.