An analog of the RAGE theorem for the impact parameter approximation to three particle scattering
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 38, Issue: 1, page 59-68
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHagedorn, George A.. "An analog of the RAGE theorem for the impact parameter approximation to three particle scattering." Annales de l'I.H.P. Physique théorique 38.1 (1983): 59-68. <http://eudml.org/doc/76182>.
@article{Hagedorn1983,
author = {Hagedorn, George A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {three body quantum system},
language = {eng},
number = {1},
pages = {59-68},
publisher = {Gauthier-Villars},
title = {An analog of the RAGE theorem for the impact parameter approximation to three particle scattering},
url = {http://eudml.org/doc/76182},
volume = {38},
year = {1983},
}
TY - JOUR
AU - Hagedorn, George A.
TI - An analog of the RAGE theorem for the impact parameter approximation to three particle scattering
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 1
SP - 59
EP - 68
LA - eng
KW - three body quantum system
UR - http://eudml.org/doc/76182
ER -
References
top- [1] W. Amrein, V. Georgescu, Bound states and scattering states in quantum mechanics. Helv. Phys. Acta, t. 46, 1973, p. 633-658. MR363267
- [2] E.B. Davies, On Enss' approach to scattering theory. Duke Math. J., t. 47, 1980, p. 171-185. Zbl0434.47014MR563374
- [3] V. Enss, Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys., t. 61, 1978, p. 285-291. Zbl0389.47005MR523013
- [4] V. Enss, Geometric Methods in Spectral and Scattering Theory of Schrödinger operators, in Rigourous atomic and Molecular physics, ed. by G. Velo and A. Wightman, Plenum, New York (to appear).
- [5] J. Ginibre, La méthode « dépendant du temps » dans le problème de la complétude asymptotique. Preprint, Université de Paris-Sud, 1980.
- [6] G.A. Hagedorn, Asymptotic completeness for the impact parameter approximation to three particle scattering. Ann. Inst. H. Poincaré, Sect. A, t. 36, 1982, p. 19-40. Zbl0482.47003MR653016
- [7] M. Reed, B. Simon, Methods of modern mathematical physics, vol. 1, Functional analysis, New York, London, Academic Press, 1972. Zbl0242.46001
- [8] M. Reed, B. Simon, Methods of modern mathematical physics, vol. II, Fourier analysis, self-adjointness, New York, London, Academic Press, 1975. Zbl0308.47002
- [9] M. Reed, B. Simon, Methods of modern mathematical physics, vol. III, Scattering theory, New York, London, Academic Press, 1979. Zbl0405.47007MR529429
- [10] M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Analysis of operators, New York, London, Academic Press, 1978. Zbl0401.47001
- [11] D. Ruelle, A remark on bound states in potential scattering theory. Nuovo Cimento, t. A61, 1969, p. 655-662. MR246603
- [12] B. Simon, Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, 1971. Zbl0232.47053MR455975
- [13] B. Simon, Phase space analysis of simple scattering systems, Extensions of some work of Enss. Duke Math. J., t. 46, 1979, p. 119-168. Zbl0402.35076MR523604
- [14] D. Yafaev, On the proof of Enss of asymptotic completeness in potential scattering. Preprint, Steklov Institute, Leningrad, 1979. Zbl0438.47012
- [15] K. Yajima, A multi-channel scattering theory for some time dependent hamiltonians, Charge transfer problem. Commun. Math. Phys., t. 75, 1980, p. 153-178. Zbl0437.47008MR582506
- [16] K. Yosida, Functional analysis, Berlin, Heidelberg, New York, Springer-Verlag, 1968. Zbl0152.32102MR617913
- [17] P. Perry, Mellin transforms and scattering theory I. Short range potentials. Duke Math. Journal, t. 47, 1980, p. 187-193. Zbl0445.47009MR563375
Citations in EuDML Documents
top- Ulrich Wüller, Existence of the time evolution for Schrödinger operators with time dependent singular potentials
- Volker Enss, Krešimir Veselić, Bound states and propagating states for time-dependent hamiltonians
- Kenji Yajima, Hitoshi Kitada, Bound states and scattering states for time periodic hamiltonians
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.