Bound states and scattering states for time periodic hamiltonians
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 39, Issue: 2, page 145-157
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] W.O. Amrein and V. Georgescu, On the characterization of bound states and scattering states in quantum mechanics, Helv. Phys. Acta, t. 46, 1973, p. 635-657. MR363267
- [2] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Commun. Math. Phys., t. 61, 1978, p. 285-291. Zbl0389.47005MR523013
- [3] J.S. Howland, Stationary scattering theory for time-periodic Hamiltonians, Math. Ann., t. 207, 1974, p. 315-335. Zbl0261.35067MR346559
- [4] J.S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J., t. 28, 1979, p. 471-494. Zbl0444.47010MR529679
- [5] Kato T., Wave operators and similarity for some nonselfadjoint operators, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
- [6] H. Kitada and K. Yajima, A scattering theory for time-dependent long range potentials, Duke Math. J., t. 49, 1982, p. 341-376. Zbl0499.35087MR659945
- [7] S.T. Kuroda, Scattering theory for differential operators, I, Operator theory, J. Math. Soc. Japan, t. 25, 1973, p. 73-104. Zbl0245.47006MR326435
- [8] S.T. Kuroda, An introduction to scattering theory, Aarhus Univ. Lecture Notes Ser., t. 51, 1978. Zbl0407.47003MR528757
- [9] T. Kisynski, Sur les opérateurs de Green des problèmes de Cauchy abstracts, Studia Math., t. 23, 1964, p. 285-328. Zbl0117.10202MR161185
- [10] M. Reed and B. Simon, Methods of moder mathematical physics, III, Scattering theory, Academic Press, New York- San Francisco-London, 1979. Zbl0405.47007MR529429
- [11] D. Ruelle, A remark on bound states in potential scattering theory, Nuovo Cimento, t. 59 A, 1969, p. 655-662. MR246603
- [12] B. Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton Univ. Press, Princeton, N. J., 1971. Zbl0232.47053MR455975
- [13] K. Yajima, Scattering theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Japan, t. 29, 1977, p. 729-743. Zbl0356.47010MR470525
- [14] K. Yajima, Resonances for the AC-Stark effect, Commun. Math. Phys., t. 87, 1982, p. 331-352. Zbl0538.47010MR682111
- [15] G. Hagedorn, An analog of the Rage Theorem for the impact parameter approximation to three particle scattering, Annales de l'IHP, t. 38, 1983, p. 59-69. Zbl0517.47009MR700700