Bound states and scattering states for time periodic hamiltonians

Kenji Yajima; Hitoshi Kitada

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 39, Issue: 2, page 145-157
  • ISSN: 0246-0211

How to cite

top

Yajima, Kenji, and Kitada, Hitoshi. "Bound states and scattering states for time periodic hamiltonians." Annales de l'I.H.P. Physique théorique 39.2 (1983): 145-157. <http://eudml.org/doc/76214>.

@article{Yajima1983,
author = {Yajima, Kenji, Kitada, Hitoshi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {completeness of the modified wave operators; characterization of the bound and scattering states in terms of the spectral properties of the Floquet operator; propagator; Schrödinger equation; periodic Hamiltonian; spectral subspace},
language = {eng},
number = {2},
pages = {145-157},
publisher = {Gauthier-Villars},
title = {Bound states and scattering states for time periodic hamiltonians},
url = {http://eudml.org/doc/76214},
volume = {39},
year = {1983},
}

TY - JOUR
AU - Yajima, Kenji
AU - Kitada, Hitoshi
TI - Bound states and scattering states for time periodic hamiltonians
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 39
IS - 2
SP - 145
EP - 157
LA - eng
KW - completeness of the modified wave operators; characterization of the bound and scattering states in terms of the spectral properties of the Floquet operator; propagator; Schrödinger equation; periodic Hamiltonian; spectral subspace
UR - http://eudml.org/doc/76214
ER -

References

top
  1. [1] W.O. Amrein and V. Georgescu, On the characterization of bound states and scattering states in quantum mechanics, Helv. Phys. Acta, t. 46, 1973, p. 635-657. MR363267
  2. [2] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Commun. Math. Phys., t. 61, 1978, p. 285-291. Zbl0389.47005MR523013
  3. [3] J.S. Howland, Stationary scattering theory for time-periodic Hamiltonians, Math. Ann., t. 207, 1974, p. 315-335. Zbl0261.35067MR346559
  4. [4] J.S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J., t. 28, 1979, p. 471-494. Zbl0444.47010MR529679
  5. [5] Kato T., Wave operators and similarity for some nonselfadjoint operators, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  6. [6] H. Kitada and K. Yajima, A scattering theory for time-dependent long range potentials, Duke Math. J., t. 49, 1982, p. 341-376. Zbl0499.35087MR659945
  7. [7] S.T. Kuroda, Scattering theory for differential operators, I, Operator theory, J. Math. Soc. Japan, t. 25, 1973, p. 73-104. Zbl0245.47006MR326435
  8. [8] S.T. Kuroda, An introduction to scattering theory, Aarhus Univ. Lecture Notes Ser., t. 51, 1978. Zbl0407.47003MR528757
  9. [9] T. Kisynski, Sur les opérateurs de Green des problèmes de Cauchy abstracts, Studia Math., t. 23, 1964, p. 285-328. Zbl0117.10202MR161185
  10. [10] M. Reed and B. Simon, Methods of moder mathematical physics, III, Scattering theory, Academic Press, New York- San Francisco-London, 1979. Zbl0405.47007MR529429
  11. [11] D. Ruelle, A remark on bound states in potential scattering theory, Nuovo Cimento, t. 59 A, 1969, p. 655-662. MR246603
  12. [12] B. Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton Univ. Press, Princeton, N. J., 1971. Zbl0232.47053MR455975
  13. [13] K. Yajima, Scattering theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Japan, t. 29, 1977, p. 729-743. Zbl0356.47010MR470525
  14. [14] K. Yajima, Resonances for the AC-Stark effect, Commun. Math. Phys., t. 87, 1982, p. 331-352. Zbl0538.47010MR682111
  15. [15] G. Hagedorn, An analog of the Rage Theorem for the impact parameter approximation to three particle scattering, Annales de l'IHP, t. 38, 1983, p. 59-69. Zbl0517.47009MR700700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.