Some remarks on conservative symmetric-hyperbolic systems governing relativistic theories
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 38, Issue: 2, page 113-120
- ISSN: 0246-0211
Access Full Article
topHow to cite
topStrumia, Alberto. "Some remarks on conservative symmetric-hyperbolic systems governing relativistic theories." Annales de l'I.H.P. Physique théorique 38.2 (1983): 113-120. <http://eudml.org/doc/76188>.
@article{Strumia1983,
author = {Strumia, Alberto},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {quasi-linear hyperbolic systems; field-dependent congruence as time direction; four velocity; covariant density; symmetrization scheme; production of generalized entropy across shocks; relativistic bound of shock speed; boundary conditions; time congruence; field-dependent},
language = {eng},
number = {2},
pages = {113-120},
publisher = {Gauthier-Villars},
title = {Some remarks on conservative symmetric-hyperbolic systems governing relativistic theories},
url = {http://eudml.org/doc/76188},
volume = {38},
year = {1983},
}
TY - JOUR
AU - Strumia, Alberto
TI - Some remarks on conservative symmetric-hyperbolic systems governing relativistic theories
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 2
SP - 113
EP - 120
LA - eng
KW - quasi-linear hyperbolic systems; field-dependent congruence as time direction; four velocity; covariant density; symmetrization scheme; production of generalized entropy across shocks; relativistic bound of shock speed; boundary conditions; time congruence; field-dependent
UR - http://eudml.org/doc/76188
ER -
References
top- [1] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi–linear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. Henri Poincaré, t. 34A, 1981, p. 65-84 ; Densità covariante convessa e sistemi iperbolici quasi–lineari, Atti 5° Conv. A. I. M. E. T. A., t. 1, Meccanica generale, 1980, p. 225-231. Zbl0473.76126
- [2] T. Ruggeri, Entropy principle and main field for a non linear covariant system, to appear in the lecture notes of the first C. I. M. E. session on « Wave propagation », Bressanone, 1980;
- [3] K.O. Friedrichs and P.D. Lax, Systems of conservation equations, Proc. Nat. Acad. Sci. U. S. A., t. 68, 1971, p. 1686-1688. Zbl0229.35061MR285799
- [4] K.O. Friedrichs, On the laws of relativistic electromangeto-fluid dynamics, Comm. Pure Appl. Math., t. 27, 1974, p. 749-808. Zbl0308.76075MR375928
- [5] A.H. Taub, Relativistic Rankine-Hugoniot equations, Phys. Rev., t. 74, 1948, p. 328-334. Zbl0035.12103MR25834
- [6] T. Ruggeri and A. Strumia, « Convex covariant entropy density, symmetric conservative form and schock waves in relativistic magnetohydrodynamics, J. Math. Phys., t. 22, 1981, p. 1824-1827. Zbl0469.76130MR628566
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.