On the double-well problem for Dirac operators

Evans M. Harrell; M. Klaus

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 2, page 153-166
  • ISSN: 0246-0211

How to cite

top

Harrell, Evans M., and Klaus, M.. "On the double-well problem for Dirac operators." Annales de l'I.H.P. Physique théorique 38.2 (1983): 153-166. <http://eudml.org/doc/76190>.

@article{Harrell1983,
author = {Harrell, Evans M., Klaus, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {double-well problem; Dirac operators; spectroscopy of diatomic molecules; asymptotics of the eigenfunctions},
language = {eng},
number = {2},
pages = {153-166},
publisher = {Gauthier-Villars},
title = {On the double-well problem for Dirac operators},
url = {http://eudml.org/doc/76190},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Harrell, Evans M.
AU - Klaus, M.
TI - On the double-well problem for Dirac operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 2
SP - 153
EP - 166
LA - eng
KW - double-well problem; Dirac operators; spectroscopy of diatomic molecules; asymptotics of the eigenfunctions
UR - http://eudml.org/doc/76190
ER -

References

top
  1. [1] B. Mueller, W. Greiner, Zeitschrift f. Naturforschung, t. 31 a, 1976, p. 1-30. 
  2. [2] J. Rafelski, L.P. Fulcher, A. Klein, Phys. Rep., t. 38, 1978, p. 227-361. 
  3. [3] V.A. Lyulka, Theor. and Math. Phys., t. 28, 1976, p. 737-744. 
  4. [4] M. Klaud, Dirac operators with several Coulomb singularities, Helv. Phys. Acta, t. 53, 1980, p. 464-482. MR611770
  5. [5] J. Morgan, B. Simon, Int. J. Quantum Chem., t. 17, 1980, p. 1143-1116. 
  6. [6] F. Weinhold, J. Math. Phys., t. 11, 1970, p. 2127-2138. MR269242
  7. [7] W. Thirring, Lehrbuch der mathematischen Physik, Vol. III: Quantenmechanik von Atomen und Molekuelen, Vienna, Springer, 1979; English translation as. A course in Mathematical Physics, Vol. III: Quantum Mechanics of Atoms and Molecules, New York and Vienna, Springer, in press, 1981. Zbl0408.46054MR537034
  8. [8] E.M. Harrell, Comm. Math. Phys., t. 75, 1980, p. 239-261. Zbl0445.35036MR581948
  9. [9] T. Kato, Perturbation theory for linear operators, 2nd ed., New York, Springer, 1976. Zbl0342.47009MR407617
  10. [10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators, New York, Academic Press, 1978. Zbl0401.47001
  11. [11] This is modeled on an argument made in conversation by R. Seiler. 
  12. [12] J.M. Combes, L. Thomas, Comm. Math. Phys., t. 34, 1973, p. 251-270. Zbl0271.35062MR391792
  13. [13] T. Kato, Comm. Pure and Applied Math., t. 10, 1957, p. 151-177. Zbl0077.20904MR88318
  14. [14] R. Ahlrichs, Theor. Chim. Acta, t. 41, 1976, p. 7-15. 
  15. [15] E.M. Harrell, Proc. Am. Math. Soc., t. 69, 1978, p. 271-276. Zbl0345.47007MR487733
  16. [16] E.B. Davies, The twisting trick for double-well Hamiltonians, Comm. Math. Physics, to appear. Zbl0524.47019MR678157

NotesEmbed ?

top

You must be logged in to post comments.