On the double-well problem for Dirac operators

Evans M. Harrell; M. Klaus

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 2, page 153-166
  • ISSN: 0246-0211

How to cite

top

Harrell, Evans M., and Klaus, M.. "On the double-well problem for Dirac operators." Annales de l'I.H.P. Physique théorique 38.2 (1983): 153-166. <http://eudml.org/doc/76190>.

@article{Harrell1983,
author = {Harrell, Evans M., Klaus, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {double-well problem; Dirac operators; spectroscopy of diatomic molecules; asymptotics of the eigenfunctions},
language = {eng},
number = {2},
pages = {153-166},
publisher = {Gauthier-Villars},
title = {On the double-well problem for Dirac operators},
url = {http://eudml.org/doc/76190},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Harrell, Evans M.
AU - Klaus, M.
TI - On the double-well problem for Dirac operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 2
SP - 153
EP - 166
LA - eng
KW - double-well problem; Dirac operators; spectroscopy of diatomic molecules; asymptotics of the eigenfunctions
UR - http://eudml.org/doc/76190
ER -

References

top
  1. [1] B. Mueller, W. Greiner, Zeitschrift f. Naturforschung, t. 31 a, 1976, p. 1-30. 
  2. [2] J. Rafelski, L.P. Fulcher, A. Klein, Phys. Rep., t. 38, 1978, p. 227-361. 
  3. [3] V.A. Lyulka, Theor. and Math. Phys., t. 28, 1976, p. 737-744. 
  4. [4] M. Klaud, Dirac operators with several Coulomb singularities, Helv. Phys. Acta, t. 53, 1980, p. 464-482. MR611770
  5. [5] J. Morgan, B. Simon, Int. J. Quantum Chem., t. 17, 1980, p. 1143-1116. 
  6. [6] F. Weinhold, J. Math. Phys., t. 11, 1970, p. 2127-2138. MR269242
  7. [7] W. Thirring, Lehrbuch der mathematischen Physik, Vol. III: Quantenmechanik von Atomen und Molekuelen, Vienna, Springer, 1979; English translation as. A course in Mathematical Physics, Vol. III: Quantum Mechanics of Atoms and Molecules, New York and Vienna, Springer, in press, 1981. Zbl0408.46054MR537034
  8. [8] E.M. Harrell, Comm. Math. Phys., t. 75, 1980, p. 239-261. Zbl0445.35036MR581948
  9. [9] T. Kato, Perturbation theory for linear operators, 2nd ed., New York, Springer, 1976. Zbl0342.47009MR407617
  10. [10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators, New York, Academic Press, 1978. Zbl0401.47001
  11. [11] This is modeled on an argument made in conversation by R. Seiler. 
  12. [12] J.M. Combes, L. Thomas, Comm. Math. Phys., t. 34, 1973, p. 251-270. Zbl0271.35062MR391792
  13. [13] T. Kato, Comm. Pure and Applied Math., t. 10, 1957, p. 151-177. Zbl0077.20904MR88318
  14. [14] R. Ahlrichs, Theor. Chim. Acta, t. 41, 1976, p. 7-15. 
  15. [15] E.M. Harrell, Proc. Am. Math. Soc., t. 69, 1978, p. 271-276. Zbl0345.47007MR487733
  16. [16] E.B. Davies, The twisting trick for double-well Hamiltonians, Comm. Math. Physics, to appear. Zbl0524.47019MR678157

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.