Propagation of chaos for Burgers' equation
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 39, Issue: 1, page 85-97
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCalderoni, P., and Pulvirenti, M.. "Propagation of chaos for Burgers' equation." Annales de l'I.H.P. Physique théorique 39.1 (1983): 85-97. <http://eudml.org/doc/76210>.
@article{Calderoni1983,
	author = {Calderoni, P., Pulvirenti, M.},
	journal = {Annales de l'I.H.P. Physique théorique},
	keywords = {weak convergence of distribution functions; limit theorem for stochastic differential equations},
	language = {eng},
	number = {1},
	pages = {85-97},
	publisher = {Gauthier-Villars},
	title = {Propagation of chaos for Burgers' equation},
	url = {http://eudml.org/doc/76210},
	volume = {39},
	year = {1983},
}
TY  - JOUR
AU  - Calderoni, P.
AU  - Pulvirenti, M.
TI  - Propagation of chaos for Burgers' equation
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1983
PB  - Gauthier-Villars
VL  - 39
IS  - 1
SP  - 85
EP  - 97
LA  - eng
KW  - weak convergence of distribution functions; limit theorem for stochastic differential equations
UR  - http://eudml.org/doc/76210
ER  - 
References
top- [1] H.P. Mc Kean, Lecture series in differential equations, t. II, p. 177, A. K. Aziz, Ed. Von Nostrand, 1969.
- [2] J. Cole, On a quasi-linear parabolic equation occurring in hydrodynamics. Q. Appl. Math., t. 9, 1951, p. 255. Zbl0043.09902MR42889
- [3] C. Marchioro, M. Pulvirenti, Hydrodynamics in two dimensional vortex theory. Comm. Math. Phys., t. 84, 1982, p. 483. Zbl0527.76021MR667756
- [4] P. Billigsley, Probability and Measure.John Wiley and Sons, 1979. MR534323
- [5] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products. Trans. Amer. Math. Soc., t. 80, 1955, p. 470-501. Zbl0066.29604MR76206
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 