Limit laws for a coagulation model of interacting random particles
Annales de l'I.H.P. Probabilités et statistiques (1988)
- Volume: 24, Issue: 3, page 319-344
- ISSN: 0246-0203
Access Full Article
topHow to cite
topNappo, G., and Orlandi, E.. "Limit laws for a coagulation model of interacting random particles." Annales de l'I.H.P. Probabilités et statistiques 24.3 (1988): 319-344. <http://eudml.org/doc/77329>.
@article{Nappo1988,
author = {Nappo, G., Orlandi, E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {coagulation model; interacting random particle; Brownian motions; Poisson processes; empirical distributions; central limit theorem},
language = {eng},
number = {3},
pages = {319-344},
publisher = {Gauthier-Villars},
title = {Limit laws for a coagulation model of interacting random particles},
url = {http://eudml.org/doc/77329},
volume = {24},
year = {1988},
}
TY - JOUR
AU - Nappo, G.
AU - Orlandi, E.
TI - Limit laws for a coagulation model of interacting random particles
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 3
SP - 319
EP - 344
LA - eng
KW - coagulation model; interacting random particle; Brownian motions; Poisson processes; empirical distributions; central limit theorem
UR - http://eudml.org/doc/77329
ER -
References
top- [1] R.A. Adams, Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
- [2] D.J. Aldous, I.A. Ibragimov and J. Jacod, École d'Été de Probabilités de Saint-Flour XIII, 1983, Lectures Notes, No. 1117, Springer Verlag, 1985.
- [3] W. Brown and K. Hepp, The Vlasov Dynamics and its Fluctuations in the Limit of Interacting Classical Particles, Comm. Math. Phys., Vol. 56, 1977, pp. 101-117. Zbl1155.81383MR475547
- [4] P. Calderoni and M. Pulvirenti, Propagation of Chaos for Burgers' Equation, Ann. Inst. Henri Poincaré, sect. A, Phys. theor., Vol. XXXIX, No. 1, 1983, pp. 85-97. Zbl0526.60057MR715133
- [5] D. Dawson, Critical Dynamics and Fluctuations for a Mean Field Model of Cooperative Behaviour, J. of Soc. Physic., Vol. 31, No. 1, 1983, pp. 29-85. MR711469
- [6] R.L. Dobrushin, Vlasov Equations, Fund. Anal. and Applied, 1979, pp. 13-115. Zbl0422.35068MR541637
- [7] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence (to appear). Zbl1089.60005MR838085
- [8] R.A. Holley and D.W. Stroock, Generalized Orstein-Uhlenbeck Processes and Infinite Particle branching Brownian Motions, Publ. Res. Inst. Math. Sc. Kyoto, Vol. 14, 1979, pp. 741-788. Zbl0412.60065MR527199
- [9] A. Joffe and M. Metivier, Weak Convergence of Sequences of Semimartingales with Applications to Multiple Branching Processes, Univ. de Montréal, rapport interne, 1982. Zbl0595.60008
- [10] M. Kac, Foundations of Kinetic Theory, Proceedings of 3rd Berkley Simposium on Math. Stat. and Prob., Vol. 3, 1956, pp. 171-179. Zbl0072.42802MR84985
- [11] M. Kac, Some ProbabilisticAspects of the Boltzmann Equation, Acta Phys. Austrica, suppl. X, Springer Verlag, 1973, pp. 379-400.
- [12] R. Lang and N.X. Xanh, Smoluchovski's Theory of Coagulations in Colloids Holds Rigorously in the Boltzmann-Grad Limit, Z. W. V.G., Vol. 54, 1980, pp. 227-280. Zbl0449.60074MR602510
- [13] C. Leonard, Thèse 3e Cycle, Univ. Paris-XI, 1984.
- [14] H.P. Mckean, Propagation of Chaos for a Class of Non Linear Parabolic Equations, Lecture series in Diff. Eq. Catholic Univ., 1967, pp. 41-57. MR233437
- [15] H.P. Mckean, A Class of Markov Processes Associated with Non Linear Parabolic Equations, Proc. Nat. Acad. Sci., Vol. 56, 1966, pp. 1907-1911. Zbl0149.13501MR221595
- [16] M. Metivier, Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev, Ann. Inst. H. Poincaré, Prob. et Stat., Vol. 20, No. 4, 1984, pp. 329-348. Zbl0549.60041MR771893
- [17] M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Centre Math. Appl., École Polytechnique, 91128 Palaiseau Cedex, 1984.
- [18] I. Mitoma, Tightness of Probabilities on C([0, 1]; S') and D([0, 1]; S'), Ann. Prob., Vol. 11, 1983, pp. 989-999. Zbl0527.60004MR714961
- [19] K. Oelschläger, A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes, Ann. Prob., Vol. 12, 1984, pp. 458-479. Zbl0544.60097MR735849
- [20] K. Oelschläger, A Law of Large Numbers for Moderately Interacting Diffusion Processes, Z.W.v.G., Vol. 69, 1985, pp. 279-322. Zbl0549.60071MR779460
- [21] A.S. Sznitman, Non Linear Reflecting Diffusion Process and the Propagation of Chaos and Fluctuations Associated, J. Funct. Anal., Vol. 56, 1984, pp. 311-336. Zbl0547.60080
- [22] A.S. Sznitman, Équations de type Boltzmann spatialement homogènes, Z.W.v.G., Vol. 66, 1984, pp. 559-592. Zbl0553.60069MR753814
- [23] A.S. Sznitman, Propagation of Chaos for a System of Annihilating Brownian Spheres, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 663-690 Zbl0669.60094MR910949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.