Limit laws for a coagulation model of interacting random particles

G. Nappo; E. Orlandi

Annales de l'I.H.P. Probabilités et statistiques (1988)

  • Volume: 24, Issue: 3, page 319-344
  • ISSN: 0246-0203

How to cite

top

Nappo, G., and Orlandi, E.. "Limit laws for a coagulation model of interacting random particles." Annales de l'I.H.P. Probabilités et statistiques 24.3 (1988): 319-344. <http://eudml.org/doc/77329>.

@article{Nappo1988,
author = {Nappo, G., Orlandi, E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {coagulation model; interacting random particle; Brownian motions; Poisson processes; empirical distributions; central limit theorem},
language = {eng},
number = {3},
pages = {319-344},
publisher = {Gauthier-Villars},
title = {Limit laws for a coagulation model of interacting random particles},
url = {http://eudml.org/doc/77329},
volume = {24},
year = {1988},
}

TY - JOUR
AU - Nappo, G.
AU - Orlandi, E.
TI - Limit laws for a coagulation model of interacting random particles
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 3
SP - 319
EP - 344
LA - eng
KW - coagulation model; interacting random particle; Brownian motions; Poisson processes; empirical distributions; central limit theorem
UR - http://eudml.org/doc/77329
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] D.J. Aldous, I.A. Ibragimov and J. Jacod, École d'Été de Probabilités de Saint-Flour XIII, 1983, Lectures Notes, No. 1117, Springer Verlag, 1985. 
  3. [3] W. Brown and K. Hepp, The Vlasov Dynamics and its Fluctuations in the Limit of Interacting Classical Particles, Comm. Math. Phys., Vol. 56, 1977, pp. 101-117. Zbl1155.81383MR475547
  4. [4] P. Calderoni and M. Pulvirenti, Propagation of Chaos for Burgers' Equation, Ann. Inst. Henri Poincaré, sect. A, Phys. theor., Vol. XXXIX, No. 1, 1983, pp. 85-97. Zbl0526.60057MR715133
  5. [5] D. Dawson, Critical Dynamics and Fluctuations for a Mean Field Model of Cooperative Behaviour, J. of Soc. Physic., Vol. 31, No. 1, 1983, pp. 29-85. MR711469
  6. [6] R.L. Dobrushin, Vlasov Equations, Fund. Anal. and Applied, 1979, pp. 13-115. Zbl0422.35068MR541637
  7. [7] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence (to appear). Zbl1089.60005MR838085
  8. [8] R.A. Holley and D.W. Stroock, Generalized Orstein-Uhlenbeck Processes and Infinite Particle branching Brownian Motions, Publ. Res. Inst. Math. Sc. Kyoto, Vol. 14, 1979, pp. 741-788. Zbl0412.60065MR527199
  9. [9] A. Joffe and M. Metivier, Weak Convergence of Sequences of Semimartingales with Applications to Multiple Branching Processes, Univ. de Montréal, rapport interne, 1982. Zbl0595.60008
  10. [10] M. Kac, Foundations of Kinetic Theory, Proceedings of 3rd Berkley Simposium on Math. Stat. and Prob., Vol. 3, 1956, pp. 171-179. Zbl0072.42802MR84985
  11. [11] M. Kac, Some ProbabilisticAspects of the Boltzmann Equation, Acta Phys. Austrica, suppl. X, Springer Verlag, 1973, pp. 379-400. 
  12. [12] R. Lang and N.X. Xanh, Smoluchovski's Theory of Coagulations in Colloids Holds Rigorously in the Boltzmann-Grad Limit, Z. W. V.G., Vol. 54, 1980, pp. 227-280. Zbl0449.60074MR602510
  13. [13] C. Leonard, Thèse 3e Cycle, Univ. Paris-XI, 1984. 
  14. [14] H.P. Mckean, Propagation of Chaos for a Class of Non Linear Parabolic Equations, Lecture series in Diff. Eq. Catholic Univ., 1967, pp. 41-57. MR233437
  15. [15] H.P. Mckean, A Class of Markov Processes Associated with Non Linear Parabolic Equations, Proc. Nat. Acad. Sci., Vol. 56, 1966, pp. 1907-1911. Zbl0149.13501MR221595
  16. [16] M. Metivier, Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev, Ann. Inst. H. Poincaré, Prob. et Stat., Vol. 20, No. 4, 1984, pp. 329-348. Zbl0549.60041MR771893
  17. [17] M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Centre Math. Appl., École Polytechnique, 91128 Palaiseau Cedex, 1984. 
  18. [18] I. Mitoma, Tightness of Probabilities on C([0, 1]; S') and D([0, 1]; S'), Ann. Prob., Vol. 11, 1983, pp. 989-999. Zbl0527.60004MR714961
  19. [19] K. Oelschläger, A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes, Ann. Prob., Vol. 12, 1984, pp. 458-479. Zbl0544.60097MR735849
  20. [20] K. Oelschläger, A Law of Large Numbers for Moderately Interacting Diffusion Processes, Z.W.v.G., Vol. 69, 1985, pp. 279-322. Zbl0549.60071MR779460
  21. [21] A.S. Sznitman, Non Linear Reflecting Diffusion Process and the Propagation of Chaos and Fluctuations Associated, J. Funct. Anal., Vol. 56, 1984, pp. 311-336. Zbl0547.60080
  22. [22] A.S. Sznitman, Équations de type Boltzmann spatialement homogènes, Z.W.v.G., Vol. 66, 1984, pp. 559-592. Zbl0553.60069MR753814
  23. [23] A.S. Sznitman, Propagation of Chaos for a System of Annihilating Brownian Spheres, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 663-690 Zbl0669.60094MR910949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.