The weakly asymmetric simple exclusion process

A. De Masi; E. Presutti; E. Scacciatelli

Annales de l'I.H.P. Probabilités et statistiques (1989)

  • Volume: 25, Issue: 1, page 1-38
  • ISSN: 0246-0203

How to cite

top

De Masi, A., Presutti, E., and Scacciatelli, E.. "The weakly asymmetric simple exclusion process." Annales de l'I.H.P. Probabilités et statistiques 25.1 (1989): 1-38. <http://eudml.org/doc/77338>.

@article{DeMasi1989,
author = {De Masi, A., Presutti, E., Scacciatelli, E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Propagation of chaos; Burgers equation; Ornstein Uhlenbeck process; traveling wave profiles},
language = {eng},
number = {1},
pages = {1-38},
publisher = {Gauthier-Villars},
title = {The weakly asymmetric simple exclusion process},
url = {http://eudml.org/doc/77338},
volume = {25},
year = {1989},
}

TY - JOUR
AU - De Masi, A.
AU - Presutti, E.
AU - Scacciatelli, E.
TI - The weakly asymmetric simple exclusion process
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1989
PB - Gauthier-Villars
VL - 25
IS - 1
SP - 1
EP - 38
LA - eng
KW - Propagation of chaos; Burgers equation; Ornstein Uhlenbeck process; traveling wave profiles
UR - http://eudml.org/doc/77338
ER -

References

top
  1. [1] E. Andjel, M. Bramson and T.M. Liggett, Shocks in the Asymmetric Exclusion Process, Preprint1986. Zbl0632.60107MR945111
  2. [2] E. Andjel and C. Kipnis, Derivation of the Hydrodynamical Equation for the Zero Range Interaction Process, Annals of probability, Vol. 12, 1984, pp. 325-334. Zbl0536.60097MR735841
  3. [3] E. Andjel and M.E. Vares, Hydrodynamic Equations for Attractive Particle Systems on Z, J. Stat. Phys., Vol. 47, 1987, pp. 265-288. Zbl0685.58043MR892931
  4. [4] C. Boldrighini, G. Cosimi, A. Frigio and M. Grasso-Nunes. In preparation. 
  5. [5] A. Benassi and J.P. Fouque, Hydrodynamic Limit for the Asymmetric Simple Exclusion Process, Annals of Probability, Vol. 15, 1987, pp. 546-560. Zbl0623.60120MR885130
  6. [6] P. Calderoni and M. Pulvirenti, Propagation of Chaos for Burgers Equation, Ann. Inst. Poincaré, Sect. A, Phys. Theor., Vol. 29, 1983, pp. 85-97. Zbl0526.60057MR715133
  7. [7] A. De MASI, P.A. Ferrari and J.L. Lebowitz, Rigorous Derivation of Reaction Diffusion Equations with Fluctuations, Phys. Rev. Letters, Vol. 55, 19, 1947, 1985. A. De MASI, P.A. Ferrari and J.L. Lebowitz, Reaction Diffusion Equations for Interacting Particle Systems, J. Stat. Phys., Vol. 44, 1986, p. 589. Zbl0629.60107MR811605
  8. [8] A. De MASI, P.A. Ferrari and M.E. Vares, An Interface Model Related to Burgers Equation, ITP report, October1987. Zbl0713.60112
  9. [9] A. De Masi, C. Kipnis, E. Presutti and E. Saada, Microscopic Structure at the Shock in the Asymmetric Simple Exclusion, Preprint, May 1987. Zbl0679.60094
  10. [10] A. De Masi, N. Ianiro, A. Pellegrinotti and E. Presutti, A Survey of the Hydrodynamical Behaviour of Many Particle Systems, in Non Equilibrium Phenomena, Vol. 11, J. L. LEBOWITZ and E. W. MONTROLL Eds., North Holland1984. Zbl0567.76006
  11. [11] P.A. Ferrari, The Simple Exclusion Process as Seen from a Tagged Particle. Annals of probability, Vol. 14, 1986, pp. 1277-1290. Zbl0628.60103MR866349
  12. [12] P.A. Ferrari, E. Presutti, E. Scacciatelli and M.E. Vares, The Symmetric Simple Exclusion Process. I, probability estimates, I.T.P. preprint, September 1987. Zbl0749.60094MR917245
  13. [13] P.A. Ferrari, E. Presutti and M.E. Vares, Non Equilibrium Fluctuations for a One-Dimensional Zero Range Process, Ann. Inst. Henri Poincaré, Vol. 24, No. 2, 1988, pp. 237-268. Zbl0653.60099MR953119
  14. [14] J. Fritz, On the Hydrodynamical Limit of aa One Dimensional Ginzburg Landau Lattice Model: the Resolvent Equation Approach; J. FRITZ, On the Hydrodynamical Limit of a One Dimensional Ginzburg Landau Lattice Model: the a priori Bounds. 
  15. [15] J. Fritz and C. Maes, In preparation. 
  16. [16] J. Gartner, Convergence Towards Burger's Equation and Propagation of Chaos for Weakly Asymmetric Exclusion Processes, Preprint, 1987. Zbl0643.60094MR931030
  17. [17] M.Z. Guo, G.C. Papanicolaou and S.R.S. Varadhan, Non Linear Diffusion Limit for a System with Nearest Neighbor Interactions, Preprint, November, 1987. Zbl1329.60334
  18. [18] R. Holley and D.W. Stroock, Generalized Ornstein-Uhlenbeck Processes and Infinite Branching Brownian Motions, Kyoto Univ.Res. Inst. Math. Sci. Publ., A 14, 1978, p. 741. Zbl0412.60065MR527199
  19. [19] C. Kipnis, S. Olla and S.R.S. Varadhan, In preparation. 
  20. [20] T.M. Liggett, Interacting Particle Systems, Sringer-Verlag, 1985. Zbl0559.60078MR776231
  21. [21] B.M. Boghosian and C.D. Levermore, A Cellular Automaton for Burgers Equation, Complex Systems, Vol. 1, 1987, pp. 17-30. Zbl0659.65119MR891510
  22. [22] H. Mckean, Propagation of Chaos for a Class of Parabolic Equations. Lectures series in Diff. Eq. (Catholic Univ.), 1967, pp. 41-57. MR233437
  23. [23] M. Metivier, Sufficient Conditions for tightness and Weak Convergence of a Sequence of Processes, Internal Report, Univ. of Minnesota, 1980. 
  24. [24] E. Presutti, Collective Behaviour of Interacting Particle Systems, Proceedings of the I Bernoulli Congress, Tashkent, Sept. 1986 (to appear). Zbl0679.60096MR1092379
  25. [25] H. Rost, Non Equilibrium Behavior of Many Particle Process: Density Profiles and Local Equilibria, Z. Wahrsch. Verw. Gebiete, Vol. 58, 1981, pp. 41-53. Zbl0451.60097
  26. [26] J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, 1983. Zbl0508.35002MR688146
  27. [27] J. Kruh and H. Spohn, In preparation. 
  28. [28] A. Sznitman, A Propagation of Chaos Result for Burger's Equation, Prob. Th. Rel. Fields, Vol. 71, 1986, pp. 581-613. Zbl0597.60055MR833270
  29. [29] D. Wick, A Dynamical Phase Transition in an Infinite Particle System, J. Stat. Phys., Vol. 38, 1985, pp. 1005-1025. Zbl0625.76080MR802566

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.